如果中国古代发现了现代数学物理定理或公式,会怎么样记录

发布时间: 2022-11-15 22:01:21 来源: 励志妙语 栏目: 经典文章 点击: 97

为什么中国古代数学会形成算法思想?它对后世的影响如何?数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后...

如果中国古代发现了现代数学物理定理或公式,会怎么样记录

为什么中国古代数学会形成算法思想?它对后世的影响如何?

数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。

从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果6。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算——微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯·诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。

现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:“我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明”。众所周知,笛卡儿的《几何学》是他的哲学著作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学著作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,“却不能帮助我们发现未知的事情”。因此他提出“需要一种发现真理的方法”,并称之为“通用数学”(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题:

任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。

因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个17—18世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程:

演绎传统——定理证明活动

算法传统——算法创造活动

中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。

我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽“阳马”一种长方锥体 体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图“弦图”原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述,有兴趣的读者可参阅参考文献3。

3 古为今用,创新发展

到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理……,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域——数学机械化。被国际上誉为“吴方法”的数学机械化方法已使中国在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,”他的工作“主要是受中国古代数学的启发”。“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。

计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,著名的计算机科学家D.E.Knuth就呼吁人们关注古代中国和印度的算法5。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过著名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文著作中包含有一定的中国数学与天文学知识,如著名的阿尔·卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔·卡西本人记述,他所工作的天文台中就有不少来自中国的学者。

然而长期以来由于“西方中心论”特别是“希腊中心论”的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了“吴文俊数学与天文丝路基金”,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。

谈谈中国古代的数学成就

1、等间距二次内插公式。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,唐代僧一行在其《大衔历》中将其发展为不等间距二次内插公式。

2、测量太阳高度。陈子是周代的天文算学家,荣方是当时天文算学家的爱好者。陈子测量:太阳高度的方法可叙述为:当夏至太阳直射北回归线时,在北方立一8尺高的标竿,观其影长为6尺。

3、勾股定理。据《周髀算经》记载, “故折矩以为句广三,股  四,径隅五。既方其外,半之者,此数之所由生也。”去,政页井盘、得三、四、五。两矩共长二十有五,是调积绝。

4、割圆术。所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。

5、圆周率。魏晋时,  刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π  的近似值3. 1416。

扩展资料:

1、在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

2、算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。

参考资料来源:百度百科--算术

  中国古代数学的成就包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、(测高、远、深的方法)测量太阳高度、祖冲之~祖暅父子、等间距二次内插公式、秦九韶的高次方程数值解法、杨辉三角和剁积术以及珠算。
  圆周率
  古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,认为圆周率是常数。
  我国数学家刘徽在注释《九章算术》(263)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.16)。
  汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的
  南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
  割圆术 3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。
  中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
  十进位制计数法
  十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,是大约3000多年前的殷代甲骨文。其中载有许多数字记录,最大的数目字是3万。如有一片甲骨上刻着“八日辛亥允戈伐二千六百五十六人。”(八日辛亥那天的战争中,消灭了敌方2656人)。这段文字说明我国在公元前1600年,已经采用了十进位值制记数法。 这种记数法中,没有形成零的概念和零号,但由于引入了几个表示数位的特殊的数字如十、百、千、万等.能确切地表示出任何自然数,因而也是相当成功的十进位值制记数法,历代稍有变革,但基本框架则一直延用至今。
  《算经十书》 《算经十书》是指汉、唐一千多年间的十部著名的数学著作,他们曾经是隋唐时代国子监算学科的教科书。十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》。
  其中阐明“盖天说”的《周髀算经》,被人们认为是流传下来的中国最古老的既谈天体又谈数学的天文历著作。其中提到大禹治水时所应用的数学知识,成为现存文献中提到最早使用勾股定理的例子。
  勾股定理
  勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。
  (测高、远、深的方法)测量太阳高度
  陈子是周代的天文算学家,荣方是当时天文算学家的爱好者。在陈子教给荣方的各种数据计算的具体方法中,我们可以发现在二千六七百年前,我国对勾股定理的应用已达到十分熟练的程度。
  陈子测量太阳高度的方法可叙述为:当夏至太阳直射北回归线时,在北方立一8尺高的标竿,观其影长为6尺。然后,测量者向南移动标竿,每移动1000里,标竿的影长就减少1寸。据此可设想,当标竿的日影减少六尺,则标竿就向南移动了60000里,而此时标竿恰在太阳的正下方。据勾股定理和相似形原理可算得:测量者与太阳的距离为10万里。陈子除了能利用相似三角形的性质外,还能熟练地运用勾股定理。
  祖冲之~祖暅父子
  他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理。
  等间距二次内插公式
  公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
  
  秦九韶的高次方程数值解法
  中国古代对方程就有研究。在《九章算术》中载有“ 方程 ”一章 ,距今已近2000年 ,书中方程是指多元联立一 次方程组 。13 世纪秦九韶首创正负开方术 ,即一元高次方程的数值解法 。在西方,英国 W.G.霍纳于 1819 年才发现类似的近似方法。14世纪朱世杰对含有四个未知数的高次联立方程组的研究已达到了很高的水平。
  杨辉三角和剁积术
  扬辉对筹算乘除捷算法进行了总结和发展,创“纵横图”之名.继沈括“隙积术”之后,关于高阶等差级数的研究创“垛积术”.
  珠算
  珠算是以算盘为工具进行数字计算的一种方法。“珠算”一词﹐最早见于汉代徐岳撰的《数术记遗》,其中有云:“珠算﹐控带四时﹐经纬三才。”北周甄鸾为此作注﹐大意是﹕把木板刻为三部分﹐上下两部分是停游珠用的﹐中间一部分是作定位用的。每位各有五颗珠﹐上面一颗珠与下面四颗珠用颜色来区别。上面一珠当五﹐下面四颗﹐每珠当一。可见当时“珠算”与现今通行的珠算有所不同。
  中国珠算﹐从明代以来﹐极为盛行﹐先后传到日本﹑朝鲜﹑东南亚各国﹐近年在美洲也渐流行。由于算盘不但是一种极简便的计算工具﹐而且具有独特的教育职能﹐所以到现在仍盛行不衰。
最牛的当然是《九章算术》了
刘 徽
刘徽(生于公元250年左右),南北朝时期数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.

贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。

他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。

秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。

朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).

祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。

祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。

杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。

赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
1、等间距二次内插公式。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,唐代僧一行在其《大衔历》中将其发展为不等间距二次内插公式。

2、测量太阳高度。陈子是周代的天文算学家,荣方是当时天文算学家的爱好者。陈子测量:太阳高度的方法可叙述为:当夏至太阳直射北回归线时,在北方立一8尺高的标竿,观其影长为6尺。

3、勾股定理。据《周髀算经》记载, “故折矩以为句广三,股 四,径隅五。既方其外,半之者,此数之所由生也。”去,政页井盘、得三、四、五。两矩共长二十有五,是调积绝。

4、割圆术。所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。

5、圆周率。魏晋时, 刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π 的近似值3. 1416

了解古代数学成就

中国古代数学有多牛,仅留下的书籍就将近1500万字,中国古代有哪些数学成就?

中国数学起源于上古至西汉末期,中国数学的全盛时期是隋中叶至元后期。接下来在元后期至清中期,中国数学的发展缓慢。
十七个成就
纵观中国数学发展史,中国古代在数学方面的成就其实也算足以开一座陈列馆,这里就我认为最瞩目的17个成就列举如下:
(1)十进位制记数法和零的采用。
十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,说明我国在公元前1600年,已经采用了十进位值制记数法,早于第二发明者印度1000多年。0是极为重要的数字,0的发现被称为人类伟大的发现之一。
“0”这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了“0”。
0在我国古代叫做金元数字,(意即极为珍贵的数字),说起“0”的出现,应该指出,我国古代文字中,“零”字出现很早,使用也较广泛。
(2)二进位制思想起源。源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646—1716)2000多年。
著名的哲学家、数学家莱布尼茨(1646—1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。从《易经》可以看到二进制的起源,中国古代的二进制运用与现代电子计算机中的运用相同。我国上古的伏羲时代就有了《周易》,《周易》是研究日月之间的变化的一门科学,通过卦爻来说明天地之间、日月系统以内人生与事物变化的大法则,就借助了二进制手段。
(3)几何思想起源。源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330—前275)100多年。
著名的《墨经》中给出了某些几何名词的定义和命题,例如:“圆,一中同长也”、“ 平,同高也”等等。墨家还给出有穷和无穷的定义。
《墨经》中有8条论述了几何光学知识,它阐述了影、小孔成像、平面镜、凹面镜、凸面镜成像,还说明了焦距和物体成像的关系,这些比古希腊欧几里德(约公元前330—275)的光学记载早百余年。在力学方面的论说也是古代力学的代表作。对力的定义、杠杆、滑轮、轮轴、斜面及物体沉浮、平衡和重心都有论述。而且这些论述大都来自实践。《墨经》光学八条,反映了春秋战国时期我国物理学的重大成就。
(4)勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580—前500)550多年。
勾股定理是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean
theorem或Pythagoras's
theorem)是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在中国,在公元前1000多年前,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。目前初中数学教材的证明方法采用赵爽弦图,证明使用青朱出入图。
赵爽弦图
青朱出入图
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
(5)幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。
幻方又称为魔方,方阵或厅平方,它最早起源于我国,宋代数学家杨辉称之为纵横图。幻方的幻在于:无论取哪一条路线,最后得到的和或积都是完全相同的,即在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵列及对角线的几个数之和或积都相等,具有这种性质的图表,称为“幻方”。我国古代称为“河图”、“洛书”,
中国汉朝的数术记遗中,称之为九宫算,又叫九宫图。又叫“纵横图”。
在中国古典文献《易经》中记载了洛书的传说:公元前23世纪大禹治水之时,一只巨大的神龟出现于黄河支流洛水中,龟甲上有9种花点的图案,分别代表1,2,3,4,5,,6,7,8,9这9个数,而3行、3列以及两对角线上各自的数之和均为15,世人称之为洛书。
南宋数学家杨辉著《续古摘奇算法》把类似于九宫图的图形命名为纵横图,书中列举3、4、5、6、7、8、9、10阶幻方。其中所述三阶幻方构造法:
“九子斜排,上下对易,左右相更,四维挺出,戴九履一,左三右七,二四为肩,六八为足”,比法国数学家Claude Gaspar
Bachet提出的方法早三百余年。
三阶幻方。射雕英雄传里黄蓉也背过这段三阶幻方的口诀。
幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。
我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到1514年,德国著名画家丢勒才绘制出了完整的四阶幻方。
(6)分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已经出现。印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。我国早于印度500多年。
中国运用最小公倍数的时间则早于西方1200年。运用小数的时间,早于西方1100多年。
(7)负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。刘徽第一次给出了区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”。
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。
(8)盈不足术。又名双假位法。最早见于《九章算术》中的第七章。在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。
盈不足术是我国古代计算盈亏类问题的一种算术方法,借有余、不足以求隐含之数,为《周礼》九数之一。《九章算术·盈不足》:“今有共买物,人出八,盈三;人出七,不足四。问:人数、物价各几何?答曰:七人,物价五十三。”。在11—13世纪一些阿拉伯数学家的著作中,也出现了盈不足术,并称之为天秤术或契丹算法。当时阿拉伯人所说的“契丹”,即指中国,这也说明古代中国的盈不足术处于世界前沿。
(9)方程术。与现今不同,线性方程组在古代称为方程,其解法称为方程术。最早出现于《九章算术》中,其中解联立一次方程组的方法,早于印度600多年,早于欧洲1500多年。在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。
(10)最精确的圆周率“祖率”。中国数学家刘徽在注释《九章算术》时(公元263年)只用圆内接正多边形就求得π的近似值,得出精确到两位小数的π值,他的方法被后人称为割圆术,其中有求极限的思想。南北朝时代的数学家祖冲之利用割圆术进一步得出精确到小数点后7位的π值(公元466年),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus
otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;这一纪录在世界上保持了一千年之久。为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称“祖率”。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
(11)等积原理。又名“祖暅”原理。保持世界纪录1100多年。
等积原理是由我国南北朝杰出的数学家祖冲之的儿子祖暅(数学家、天文学家)首先提出来的。他同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪,是祖暅对世界数学的杰出贡献。祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即“等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等”,这就是著名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。该原理在西方直到十七世纪才由意大利数学家卡瓦列利﹝Bonavent
uraCavalieri﹞发现,比祖暅晚一千一百多年。
(12)二次内插法。隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642—1727)1000多年。
我国古代早就发明了内插法(内插法是用一组已知的未知函数的自变量的值和与它对应的函数值来求一种未知函数其它值的近似计算方法,是一种数值逼近求法,天文学上和农历计算中经常用的是白塞尔内插法。内插法当时称为招差术,如公元前1世纪左右的《九章算术)中的“盈不足术”即相当于一次差内插(线性内插);公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式(抛物线内插);这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式;元朝作《授时历》的郭守敬进一步发明了三次差内插法。在刘焯1000年后,郭守敬400年后,英国牛顿才提出内插法的一般公式。
(13)增乘开方法。增乘开方法为中国古代数学中求高次方程数值解的一般方法,在现代数学中又名“霍纳法”。
我国宋代数学家贾宪最早发明于11世纪,比19世纪英国数学家霍纳提出的时间早800年左右。它由11世纪的贾宪首创,中经12世纪的刘益,到13世纪秦九韶最后完成,19欧洲出现的霍纳法的步骤以及现代数学中综合除法的原理与它相同。该方法由《九章算术》的开方术衍生而来,经过贾宪、刘益、杨辉等人的推广和传播,到13世纪被发展成为求高次方程数值解的系统方法,秦九韶、李冶、朱世杰的著作中都有记载,其中以秦九韶的《数书九章》论述最为详细。霍纳在1819年发表的《解所有次方程》论文中的算例,其算法程序和数字处理都远不及五百多年前的秦九韶有条理;秦九韶算法不仅在时间上早于霍纳,也比较成熟。增乘开平方法是北宋数学家贾宪发明的开方法,原收《释锁算书》一书。贾宪原作已佚,但他对数学的重要贡献,被南宋数学家杨辉引用,被抄入《永乐大典》卷一万六千三百四十四,幸得以保存下来,现存英国剑桥大学图书馆。
(14)杨辉三角。杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,实际上是一个二项展开式系数表。它本是贾宪创造的,见于他著作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。
杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。杨辉三角形所蕴含的数字排列规律,让我们在感受数学美的同时,也体会到它的趣味性和实用性。
在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623—1662),他的发明时间是1653年,比贾宪晚了近600年。
(15)中国剩余定理。又称孙子定理,是中国古代求解一次同余式组的方法。中国剩余定理,实际上就是解联立一次同余式的方法。这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777—1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”,
它是数论中一个重要定理。
(16)数字高次方程方法,又名“天元术”。 中国古代求解高次方程的方法。13世纪,高次方程的数值解法是数学难题之一。
天元术是中国古代的代数学方法之一种,是中国古代建立高次方程的方法。1248年,金代数学家李冶在其著作《测圆海镜》、《益古演段》中,系统地介绍了用天元术建立二次方程,并巧妙地把它表达在筹算中。元代数学家王恂广泛使用天元术解高次方程。这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。
(17)招差术。招差术即高次内插法,是现代计算数学中一种常用的插值方法,也就是高阶等差级数求和方法。从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一问题得以解决。在世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。中国古代关于高阶等差数列和的差分能否相分于求内插公式的方法。朱世杰的《四元玉鉴》(1303)卷中“如像招数”中的问题都是讨论招差问题的。
其中朱世杰给出了一个四次招差公式:
这与牛顿插值公式一致,但牛顿提出这一公式晚于朱世杰三百多年。
招差术的创立、发展和应用是中国数学史和天文学史上具有世界意义的重大成就。
总的来说,中国古代的数学发展缺乏公理化体系。而这恰恰是从初等数学到高等数学发展的瓶颈。中国数学从一开始就没有向公理化发展的倾向,更多的是对某类具体问题的解法或者对某类规律的归纳。而西方数学家的代表人物欧几里得所做的最重要的工作可以说就是几何学的公理化。《几何原本》就是以数个不证自明的公理为基础的公理化体系的著作。这种方式建立的所谓数学的和谐之美、简洁之美。这位古希腊数学家对整个欧洲科学都影响深远。牛顿最重要的著作《自然哲学的数学原理》就是沿用的这种公理化体系的过程。对现象的描述,再把这类有规律的现象整理为最基本的数个公理、定律,再运用这些定律解释更复杂的现象。其最更根本的便是万有引力定律,以及三大运动定律。以当时的水平来讲,这样就足以“预言万物的运动”了。
另外,中国古代数学水平的落后是和整个科技水平的落后也是联系在一起的,两者是共进共退的。中国古代科技水平的衰落那就是另一个大问题了。
参考文献:
1.《探究勾股定理》同济大学出版社
2.《 神奇的纵横图》 王前卫
3.《九章算术》张苍 耿寿昌
4.《杨辉三角与棋盘形街道走法》 琚国起有
中国古代的数学其实成就是很高的。我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。
中国人还首创了世界上第一个数学专科学校,这就是国子监所辖的六学之一的算学,长安与洛阳各置一所,专门培养数学人才。算学招收学生,置有算学博士等学官,负责学生的教学工作。
本文标题: 如果中国古代发现了现代数学物理定理或公式,会怎么样记录
本文地址: http://www.lzmy123.com/jingdianwenzhang/250023.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    为什么弹药爆炸时炸不碎铜弹壳我们应当如何辨别伪科学
    Top