物理学和信息学的信息概念有不同吗 怎么理解

发布时间: 2022-07-02 12:01:56 来源: 励志妙语 栏目: 经典文章 点击: 108

地球物理学和地球信息科学与技术的差别我想知道一下这两个的差别,再就业方向上有什么差异马?应用方面那个比较广泛一些?一、地球物理学...

物理学和信息学的信息概念有不同吗 怎么理解

地球物理学和地球信息科学与技术的差别

我想知道一下这两个的差别,再就业方向上有什么差异马?应用方面那个比较广泛一些?
一、地球物理学

地球科学的主要学科,用物理学的方法和原理研究地球的形成和动力,研究范围包括地球的水圈和大气层。

地球物理学研究广泛系列的地质现象,包括地球内部的温度分布;地磁场的起源、架构和变化;大陆地壳大尺度的特征,诸如断裂、大陆缝合线和大洋中脊。现代地球物理学研究延伸到地球大气层外部的现象(例如,电离层电机效应〔ionospheric dynamo〕、极光放电〔auroral electrojets〕和磁层顶电流系统〔magnetopause current system〕),甚至延伸到其他行星及其卫星的物理性质。 地球物理学的很多问题与天文学的相似,因为研究对象很少能直接观察,结论应当说主要是根据物理测量的数学解释而得出的。这包括地球重力场测量,在陆地和海上用重力测量仪,在空间则用人造卫星;还包括行星磁场的磁力测量;又包括地下地质构造的地震测量,这用地震或人工方法产生的弹性反射波和弹性折射波来进行(参阅seismic survey)。

用地球物理技术来进行的研究,证明在为支持板块构造学(plate tectonics)理论提供证据方面是极其有用的。例如,地震学资料表明,世界地震带标示出了组成地球外壳的巨大刚性板块的边界,而古地磁学研究的发现,又使得追索地质历史时期大陆的漂移成为可能。 业务培养目标:本专业培养具备坚实的数理基础和较系统的地球物理学基本理论、基本知识和基本技能,受到基础研究和应用基础研究的基本训练,具有较好的科学素养及初步教学、研究能力,能在科研机构、高等学校或相关的技术和行政部门从事科研、教学、技术开发和管理工作的高级专门人才。

业务培养要求:本专业学生主要学习地球物理学方面的基本理论和基本知识,受到基础研究和应用基础研究方面的科学思维和科学实验训练,掌握地球深部构造、地震预测、地球物理工程、能源及矿产资源勘察等研究与开发的基本技能。

主干学科:地质学、物理学

主要课程:地球物理学(地震学、重力学、地磁学、地电学)、地球物理观测、地质学、连续介质力学、计算机及信息处理等

主要实践性教学环节:包括主要课程的实验和实习、野外地质实习、毕业实习等,一般安排6周~12周。

修业年限:四年

授予学位:理学学士

相近专业:地质学、勘查技术与工程、资源勘查工程

开设院校:云南大学 吉林大学 长安大学 东华理工大学 中国科学技术大学 北京大学 同济大学 中国地质大学 成都理工学院 武汉大学 长江大学

相近专业:地质学、勘查技术与工程、资源勘查工程。

就业前景:主要到科研机构、高等学校或相关的技术和行政部门从事科研、教学、技术开发和管理工作。

二、地球信息科学与技术

培养目标:本专业面向21国民经济建设和发展的需要,培养基础理论扎实,系统掌握现代信息科学与技术的理论和方法,能从事地球空间信息工程、3S集成(GPS、GIS、RS)、空间数据无线网络传输、数据信息可视化等领域科学研究、应用研究、教学和运行管理等方面工作,有较强的独立工作能力和创新精神、德智体全面发展的高级科技人才。

业务培养要求:本专业学生要求在学习数学、物理学、地球动力学与空间测地学基础知识和系统掌握现代信息科学与技术的理论和方法的基础上,对学生进行基础和应用基础研究方法的科学思维和科学实验训练,要求学生具备空间信息的分类与采集、传输与分析、成像与图像处理、空间信息系统的设计与应用等领域的研究与开发的基本技能。

毕业生应获得以下几方面的知识和能力:
1、具有扎实的自然科学基础,较好的人文素养、良好的文字表达能力;
2、掌握数学、物理学、地学、测地学、地球物理学、信息科学、电子学、计算机科学、数字制图学等方面基本理论、基本知识和基本技能,具有坚实而宽广的专业基础知识;
3、掌握地球空间信息科学的基本理论、基本知识和基本实验技能,了解相近领域的基本概念和方法;
4、了解地球空间信息科学与技术的理论前沿、应用前景和最新发展动态;
5、熟练掌握一门外国语;
6、具有一定的归纳、整理、分析、设计、撰写论文的基本能力、进行学术交流的能力、较强的创新意识和创新精神。

主干学科:地球动力学与空间测地学、信息科学、电子计量学。

主要课程:数学、物理学、地球动力学、空间测地学、地球物理学、工程设计学、信息工程学、遥感学、全球定位系统、数字地形模拟、卫星摄像与空间摄影测量学、地理信息系统、计算机与信息传输与处理、系统工程管理学。

主要实践性教学环节:包括主要课程地实验和实习、专业课程的教学实习、初步科研训练和毕业设计(毕业论文)等,一般安排30周。

学制:本科四年。

授予学位:工学学士(有些大学或授予理学学士学位)

相近专业:地理信息系统、地球物理、大地测量

办学特色:本专业是新兴学科,以地球空间信息工程、3S集成(GPS、GIS、RS)、空间数据无线网络传输、数据信息可视化等为方向,突出学科间的交叉。在课程设置上,基础课课时占5 6.8%,数学、物理学和信息科学是本专业的重要基础;在教学计划中,充分体现“通才教育,培养厚基础、宽口径、实践能力强的人才”的方针;在学生培养阶段实施导师制,鼓励学生参加课外学术科技活动,注重学生动手能力、综合分析能力、学术交流能力和求真、怀疑、拓新、协作的科学精神的培养。

就业领域:本专业属交叉学科,学生“数理外”基础扎实,基础理论厚实,专业知识面宽,适应能力强,就业面广,适合到政府机关、城市建设、国土资源、国防、信息产业、财政金融、公共事业管理、交通、电力、能源、环境保护、气象等部门和领域从事科研、教学、生产及管理工作。
地球物理学 地球科学的主要学科,用物理学的方法和原理研究地球的形成和动力,研究范围包括地球的水圈和大气层。 地球物理学 geophysics 地球物理学研究广泛系列的地质现象,包括地球内部的温度分布;地磁场的起源、架构和变化;大陆地壳大尺度的特征,诸如断裂、大陆缝合线和大洋中脊。现代地球物理学研究延伸到地球大气层外部的现象(例如,电离层电机效应〔ionospheric dynamo〕、极光放电〔auroral electrojets〕和磁层顶电流系统〔magnetopause current system〕),甚至延伸到其他行星及其卫星的物理性质。 地球物理学的很多问题与天文学的相似,因为研究对象很少能直接观察,结论应当说主要是根据物理测量的数学解释而得出的。这包括地球重力场测量,在陆地和海上用重力测量仪,在空间则用人造卫星;还包括行星磁场的磁力测量;又包括地下地质构造的地震测量,这用地震或人工方法产生的弹性反射波和弹性折射波来进行(参阅seismic survey)。 用地球物理技术来进行的研究,证明在为支持板块构造学(plate tectonics)理论提供证据方面是极其有用的。例如,地震学资料表明,世界地震带标示出了组成地球外壳的巨大刚性板块的边界,而古地磁学研究的发现,又使得追索地质历史时期大陆的漂移成为可能。 业务培养目标:本专业培养具备坚实的数理基础和较系统的地球物理学基本理论、基本知识和基本技能,受到基础研究和应用基础研究的基本训练,具有较好的科学素养及初步教学、研究能力,能在科研机构、高等学校或相关的技术和行政部门从事科研、教学、技术开发和管理工作的高级专门人才。 业务培养要求:本专业学生主要学习地球物理学方面的基本理论和基本知识,受到基础研究和应用基础研究方面的科学思维和科学实验训练,掌握地球深部构造、地震预测、地球物理工程、能源及矿产资源勘察等研究与开发的基本技能。 主干学科:地质学、物理学 主要课程:地球物理学(地震学、重力学、地磁学、地电学)、地球物理观测、地质学、连续介质力学、计算机及信息处理等 主要实践性教学环节:包括主要课程的实验和实习、野外地质实习、毕业实习等,一般安排6周~12周。 修业年限:四年 授予学位:理学学士 相近专业:地质学、勘查技术与工程、资源勘查工程 开设院校 云南大学 吉林大学 长安大学 东华理工大学 中国科学技术大学 北京大学 同济大学 中国地质大学 地球物理学可以帮助勘探石油和煤天然气(建设油田如大庆),对社会有很大帮助. 成都理工学院 武汉大学 长江大学 相近专业:地质学、勘查技术与工程、资源勘查工程。 就业前景:主要到科研机构、高等学校或相关的技术和行政部门从事科研、教学、技术开发和管理工作。 地球信息科学与技术 地球信息科学与技术专业 业务培养目标: 本专业面向21国民经济建设和发展的需要,培养基础理论扎实,系统掌握现代信息科学与技术的理论和方法,能从事地球空间信息工程、3S集成(GPS、GIS、RS)、空间数据无线网络传输、数据信息可视化等领域科学研究、应用研究、教学和运行管理等方面工作,有较强的独立工作能力和创新精神、德智体全面发展的高级科技人才。 业务培养要求: 本专业学生要求在学习数学、物理学、地球动力学与空间测地学基础知识和系统掌握现代信息科学与技术的理论和方法的基础上,对学生进行基础和应用基础研究方法的科学思维和科学实验训练,要求学生具备空间信息的分类与采集、传输与分析、成像与图像处理、空间信息系统的设计与应用等领域的研究与开发的基本技能。 毕业生应获得以下几方面的知识和能力: 1、具有扎实的自然科学基础,较好的人文素养、良好的文字表达能力; 2、掌握数学、物理学、地学、测地学、地球物理学、信息科学、电子学、计算机科学、数字制图学等方面基本理论、基本知识和基本技能,具有坚实而宽广的专业基础知识; 3、掌握地球空间信息科学的基本理论、基本知识和基本实验技能,了解相近领域的基本概念和方法; 4、了解地球空间信息科学与技术的理论前沿、应用前景和最新发展动态; 5、熟练掌握一门外国语; 6、具有一定的归纳、整理、分析、设计、撰写论文的基本能力、进行学术交流的能力、较强的创新意识和创新精神。 主干学科:地球动力学与空间测地学、信息科学、电子计量学。 主要课程:数学、物理学、地球动力学、空间测地学、地球物理学、工程设计学、信息工程学、遥感学、全球定位系统、数字地形模拟、卫星摄像与空间摄影测量学、地理信息系统、计算机与信息传输与处理、系统工程管理学。 主要实践性教学环节:包括主要课程地实验和实习、专业课程的教学实习、初步科研训练和毕业设计(毕业论文)等,一般安排30周。 学制:本科四年。 授予学位:工学学士(有些大学或授予理学学士学位) 相近专业:地理信息系统、地球物理、大地测量 办学特色:本专业是新兴学科,以地球空间信息工程、3S集成(GPS、GIS、RS)、空间数据无线网络传输、数据信息可视化等为方向,突出学科间的交叉。在课程设置上,基础课课时占5 6.8%,数学、物理学和信息科学是本专业的重要基础;在教学计划中,充分体现“通才教育,培养厚基础、宽口径、实践能力强的人才”的方针;在学生培养阶段实施导师制,鼓励学生参加课外学术科技活动,注重学生动手能力、综合分析能力、学术交流能力和求真、怀疑、拓新、协作的科学精神的培养。 就业领域:本专业属交叉学科,学生“数理外”基础扎实,基础理论厚实,专业知识面宽,适应能力强,就业面广,适合到政府机关、城市建设、国土资源、国防、信息产业、财政金融、公共事业管理、交通、电力、能源、环境保护、气象等部门和领域从事科研、教学、生产及管理工作。

麻烦采纳,谢谢!
地球物理学 地球科学的主要学科,用物理学的方法和原理研究地球的形成和动力,研究范围包括地球的水圈和大气层。 地球物理学 geophysics 地球物理学研究广泛系列的地质现象,包括地球内部的温度分布;地磁场的起源、架构和变化。
地球物理学专业包括应用地球物理学,固体地球物理学,地球探测与信息技术三个.
应用地球物理学,侧重于工程、矿产勘探.
固体地球物理学,侧重于天然地震方向.
地球探测与信息技术,就是人们通常做说的“石油物探”了.
现在本科教育一般都是把地球物理学的所有专业方向都教了.在研究生阶段,根据各个导师的特点及所擅长的方向,你自然也就会进入相应的专业方向.
总之,固体地球物理专业的研究生专业方向是属于天然地震方向,也可从事工程、矿产勘探.

如何理解初中物理课程内容和信息技术的结合

为了使学生顺利理解并掌握其中的物理精髓,在教学中合理使用多媒体等信息技术,可达到突出重点、突破难点之效果。但有些教师在实际使用过程中,常常用多媒体课件代替实验、代替黑板、代替练习与反馈,有时看似很现代,但如果长期采用这样虚拟环境下的学习方式,就违背了物理学科是以实验为基础的认识规律,不利于培养学生的创新精神和实践能力。到底什么时候应用、什么时机切入多媒体信息技术,才能达到充分发挥其优势的目的?由于本人从事信息技术与初中物理教学工作,现谈一谈我在教学实践中的体会,与大家共同探讨。整合的关键是把信息技术当作学生获取信息、探索问题、解决问题和构建知识的认识工具。这就要求教师在学科技术中要广泛应用信息技术,这种应用不是简单地把信息技术仅仅作为辅助教师教学的演示工具,而是要实现学科教学与信息技术的“融合”。
  将信息技术运用于物理学科教学,弥补了传统教学的不足,提高了教学效率,同时也培养了学生的信息技术技能和解决问题的能力,它具有以下几方面的功能。
一、引入新课创设问题情境
初中物理每节开始都有引入新课的事例,并提出了本节应解决的主要问题。我们若平铺直叙的引入,学生兴趣不会很大,而利用多媒体创设问题情境,则可以收到意想不到的效果。如在《机械运动》引入新课时,利用多媒体再现飞行员在空中抓子弹的动画,并闪现“他为什么会有这么大的本领呢?什么情况下我们也能抓住一颗飞行的子弹呢?”的字样,学生学习兴趣就会很高,心理上会产生一种不弄清楚不罢休的状态,注意力就会集中于学习内容上。又如在《压力和压强》一节的教学中,压强是教学重点和难点,学生是第一次接触,压强在生活中有哪些应用?他们很茫然。在引入新课时,用多媒体展示在雪中艰难行走的步行者陷进雪中和愉快的滑雪者轻松前进的动画,学生定会产生强烈的求知欲望,引入新课的目的成功达到。
二、 模拟实验情境
  物理是一门以实验为基础的学科,实验教学是中学物理教学的重要一环,丰富多彩、生动有趣的实验是物理实验教学的特点。在普通物理课堂的演示实验中,由于受到常规实验仪器和环境本身的限制,实验效果常不如人意。而通过多媒体技术模拟实验的辅助, 模拟一些重要的,现实实验环境下难以完成的一些物理实验,则可弥补常规实验仪器的不足,提高物理实验的演示效果。同时物理学科中有些知识是抽象的,所用的术语也很抽象,例如,“分子运动论”理论,“力”的概念,“磁场”的概念,电压的概念等过程都是抽象难懂的。信息技术的运用可帮助教师和学生解决这些重点、难点问题。
比如,“分子运动论”,学生是看不到物质内部分子的运动的,因此难以理解,可用多媒体计算机模拟分子运动和碰撞的过程;气体的扩散现象比较快,学生也能理解,但对于课本中提到的“在量筒里装一半清水,水下面注入硫酸铜溶液”,所发生的扩散现象,需要几天后才能看到现象,至于固体的扩散那就需要更长的时间了。这时,如果运用信息技术,加上“特技”,就能把这两个实验的现象很快的展现在学生面前。该模拟实验能使学生很直观地知道其中的原理,而无需教师反复讲解。
三、展现宏观或微观的物理现象
初中学生的抽象思维在很大程度上还属于“经验型”,具体形象的成份仍然起着重要的作用。物理学科是一门以观察和实验为基础的学科,但许多物理知识不仅仅是通过实验总结出来的,象涉及到一些宏观或微观的自然现象和高科技的现代物理知识,就不能用演示实验来展示。如果靠老师平铺直叙的讲述物理事实和现象,由于初中生的知识、经验有限,又常常带有主观性和片面性,容易固执已见,怀疑一切,他们对你讲的内容因为不明白,所以不相信,知识就难以掌握。此时若利用多媒体展示这些宏观或微观的现象,效果就可能大不一样。如在《光的直线传播》一节的教学中,有分析日食和月食成因的内容,你直接说这是由于光的直线传播造成的,学生疑惑,不能接受。但你若采用多媒体动画模拟地球和月球的运动,学生能观察出当月球转到太阳和地球之间时,由于光的直线传播,它就挡住了太阳射向地球的光线,地球上出现了阴影,就是日食。由于模拟了具体的形象,学生看得明白,自然知识就会牢记不忘了。
四、对学生进行知识检测
对学生进行当堂检测是教学不可缺少的环节。信息技术正好可发挥其强大的交互性和多媒体对感官的刺激性,给学生以视觉、听觉的多方面、多兴奋中心的刺激,达到培养兴趣、增强记忆、加深理解的目的。但具体使用过程中,绝对不是课本习题的搬家或是利用了大容量的特点搞什么“题海战术”。而应采用适宜的声音、图像、图形、视频等模拟出较为真实的物理现象,并利用其交互性,展开教师与学生、正确与错误的对话和反应。如在《惯性 惯性现象》一节复习检测中,可设计一题:先切入飞机正确投掷救灾物质的动画,再闪现:“飞机投掷救灾物质为什么要提前投掷?”的问题。让学生用本堂课所学知识来回答。对将惯性知识用于实际解释一些物理现象有困难的学生,可让他们再看飞机在目标上空投掷物质产生后果的动画。
五、 转换观察空间
  初中物理研究的对象大到宇宙天体,小到原子电子,都是学生不能直接感知的,因而学习起来有困难。借助信息技术我们可以把宏观的天体微观化,在多媒体计算机上模拟其运行过程,也可以将微观的原子、电子宏观化,在多媒体计算机上模拟其运动过程,从而增强学生的感知能力,促进理解。例如,“人造卫星从地球的远地点向近地点运动时,其动能和势能的变化如何?”,学生对于这个情境没有生活的体验,如果通过计算机播放多媒体课件,学生就能直观地看到人造卫星在运行时,速度的快慢,从而准确地作出判断。
六、控制实验速度
  很多物理运动过程都是瞬间发生、稍纵即逝,学生对实验现象的观察很难细致全面。计算机动画技术能很好地重视某些物理现象,且可按需要随时进行控制,或化快为慢,或暂停,实验清楚,直观地呈现于学生面前。比如,“在研究匀速直线运动与变速直线运动”的时候,为了观察小球运动的曲线,采用“频闪摄影”技术,能够很好的展现小球运动的全过程。学生对匀速直线运动和变速直线运动的概念理解更透彻,掌握更牢固。
七、展现思维过程
很多物理方法、物理思维存在于人的头脑中,不能用实验演示,仅用语言又难以描述,可以用多媒体来辅助表达。例如在研究牛顿第一定律的时候,学生对“一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。”没有生活体验,而教师又不能通过实验进行演示,这时,利用计算机协助制作一个小球由摩擦力从大变小,直到摩擦力为零,全过程小球的运动速度的变化。这样就将抽象的思维方法和思维过程以生动形象的过程描述出来,学生容易接受。
以上观点是我结合信息技术和初中物理教学工作中的几点体会,信息技术在教学过程中的切入点和切入时机应该还有许多地方,我们作为教师有责任不断的去探索和研究,真正发挥现代化教学手段的优势。
综上所述,把信息技术与物理学科课程有机整合,并在课堂教学中运用自如,需要教师有较高的素质。在进行教学设计时,要努力做到既发挥教师的主导作用,又充分体现学生的认知主体作用。把学生置于主体地位并提供主体地位的天地,使学生真正成为学习的主人。在整个教学过程中,教师和学生分享彼此的思考、见解和知识,交流彼此的情感、观念,实现教学相长。

有关“信息”一词的不同解释

1.《辞海》里“信息”一词是什么意思? rn2.《中国大百科全书》里“信息”一词是什么意思? rn3.信息论奠基人之一香农怎样解释“信息”一词? rn4.控制论奠基人维纳怎样解释“信息”一词? rn5.我国信息论专家种义信怎样解释“信息”一词? rn6.其它书或者人怎样解释“信息”一词? rn7.你怎样理解“信息”一词?
<中国大百科全书>
信息:
1.音讯;消息。李中《暮春怀故人》诗:“梦断美人沉信息,目穿长路倚楼台。”

2.通信系统传输和处理的对象,泛指消息和信号的具体内容和意义。通常须通过处理和分析来提取。信息的量值与其随机性有关,如在接收端无法预估消息或信号中所蕴含的内容或意义,即预估的可能性越小,信息量就越大。

辞海》(中国1999年普及版):①音讯:"消息"。②通信系统传输和处理的对象,泛指消息和信号的具体内容和意义,通常须通过处理和分析来提取。信息的量值与其随机性有关,如在接收端无法预估消息或信号中所蕴含的内容或意义,即预估的可能性越小,信息量就越大。
《新华词典》(2001年修订版)对"信息"的注释:①音信:消息。②信息论中指用符号传送的报道,报道的内容是接收符号者预先不知道的。③事物的运动状态和关于事物运动状态的陈述。
《韦氏字典》(美国):信息是用以通信的事实,是在观察中得到的数据、新闻和知识。

信息论创始人香侬(C.E.Sannon美国贝尔实验室的数学家)认为:"信息是不确定量的减少","信息是用来消除随机不确定性的东西"。

信息论的奠基人之一香农从通信工程的角度对信息解释为:用来消除不确定性的东西,指的是有新内容 或新知识的消息;
控制论的奠基人维纳对信息的解释为:信息就是信息,不是物质,也不是能量;
哲学家指信息是认识世界的依据,数学家认为信息是一种概率,物理学家认为信息是"负熵",通信学
家认为信息是"不定度"的描述.
美国图书馆学会的信息专家对信息的论述为:信息是一切思想,事实和富有想象力的作品,它们以各种方式进行记录和传播.
目前比较容易被大家接受信息的描述是:信息是反映一切事物属性及动态的消息,情报,指令,数据和信号中所包含的内容.

我国信息学家钟义信认为,信息科学是以信息作为主要研究对象,以信息的运动规律和应用方法为主要研究内容,以扩
展人类的信息功能(特别是智力功能)为主要研究目标的一门新兴的,边缘
的,横断的综合性科学.其研究范围是:
(1)探讨信息的本质;
(2)研究信息的质量;
(3)阐明信息的运动规律;
(4)揭示利用信息进行控制的原理和方法;
(5)寻求利用信息实现最佳组织的原理和方法.
第1项涉及到信息是属于物质或精神范畴的问题,因此与哲学有关;第
2项是研究信息的度量方法;第3项是研究信息如何产生,如何提取,如何
检测,变换,传递,存贮,处理和识别的规律,以上两项属于信息论的基本
领域;第4项是控制论,包括信息仿生学和人工智能;第5项是系统论,包
括运筹学,系统工程,耗散结构和协同学等.因此信息科学的基础是哲学,
数理化和生物科学;它的主体是信息论,控制论和系统论;主要的工具包括
电子科学和计算机科学.
本文标题: 物理学和信息学的信息概念有不同吗 怎么理解
本文地址: http://www.lzmy123.com/jingdianwenzhang/182788.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    东北亚民族的熊崇拜原型是棕熊还是亚洲黑熊现实生活中有咖啡猫
    Top