数学家在生活中发现的数学……急求数学家在生活中发现的数学,rn例如阿基米德在洗澡的时候发现了辨别金冠真伪的方法……(MS是阿基米...

有人说「数学的进步不是由无数群众推动的,而是从古至今极个别人才个人能力推动前进的」,你怎么看

数学家在生活中发现的数学……急

求数学家在生活中发现的数学,rn例如阿基米德在洗澡的时候发现了辨别金冠真伪的方法……(MS是阿基米德……)rn急急急急急……
数学奇才、计算机之父——冯·诺依曼

20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".
约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.
1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.
1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.
现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.
冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力.
EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度. 1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序
原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想. 冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖.
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.

数学奇才——伽罗华

1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。

1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。

青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。

伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

“数学之神”——阿基米德

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

数学家的故事——祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心

数学之父——塞乐斯

塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。 塞乐斯最先证明了如下的定理:

1.圆被任一直径二等分。

2.等腰三角形的两底角相等。

3.两条直线相交,对顶角相等。

4.半圆的内接三角形,一定是直角三角形。

5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:

这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。
数学奇才、计算机之父——冯·诺依曼

20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".
约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.
1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.
1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.
现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.
冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力.
EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度. 1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序
原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想. 冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖.
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.

数学奇才——伽罗华

1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。

1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。

青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。

伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

“数学之神”——阿基米德

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

数学家的故事——祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心

数学之父——塞乐斯

塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
阿基米德那个。。。其实严格说来是物理学啦,因为其实这是浮力的计算方法。。力就属于力学啊。。

那么瓦特看水开了掀开水壶盖子发明蒸汽机。。牛顿被苹果砸发现万有引力。。。这个,也算吧?
好像平面坐标是在看星空图时候想出来的吧

谁给我讲讲什么是数学思维?

数学思维就是用数学思考问题和解决问题的思维活动形式。思维指的是人脑对客观现实的概括和间接反映,属于人脑的基本活动形式。

数学思维也就是人们通常所指的数学思维能力,即能够用数学的观点去思考问题和解决问题的能力。比如转化与划归,从一般到特殊、特殊到一般,函数/映射的思想。

数学思维教学,是数学教师在数学教学活动过程中,引导学生根据数学素材进行具体化的数学构思,进行数学运算,形成数学感知。

扩展资料

数学思维拓展训练特点:

1、 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,

2、 通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。

3、 根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。

参考资料来源:百度百科——数学思维

数学思维就是用数学思考问题和解决问题的思维活动形式。思维指的是人脑对客观现实的概括和间接反映,属于人脑的基本活动形式。

数学思维不是一种知识,而是一种能力。数学思维是搭建数学世界最重要的根基,不管是纯粹的数学学习与数学研究,还是把数学工具应用到其他领域,数学思维都发挥着重要作用。

扩展资料

数学思维包括逻辑思维、形象思维、空间抽象思维等。它如同数学这棵参天大树的庞大根系,虽然从外表上看不见,却为数学提供着重要的营养源泉。“我们常说数学是优美的,这种美就主要体现在它的思维之美。

数学思维之美,在于实用和理性的平衡之美。数学爱好者张建对记者举例说,以数学分支之一的统计学为例,在解决现实问题过程中,统计学给人以简洁明快的美感。

大数定律、中心极限定律、贝叶斯概率等基本统计规律,呈现出概念世界和知觉世界一致之后的和谐。其背后的一系列定理,对于理性和经验、理论和实践、演绎和归纳、公理体系和算法程序的均衡统一,具有举足轻重的作用。

资料显示,有些精密科学可以依靠明确的定义和逻辑有所发展,有些问题要靠近似的测量解决,需要误差理论、概率论、数理统计等统计学智慧实现。

参考资料来源:百度百科-数学思维

数学的本质是什么?其绝不仅仅是学习并应用技巧的算术工具,也不仅仅是抽象的符号。当代的我们,不仅要会计算也要掌握背后的原理,注意到数学的思想。

一直以来,中学致力于讲授数学的技巧,很少讲数学是什么,学生因此认为数学就是学习并应用相关技巧以解决特定问题的一门学科。这有点像把足球运动看作是运用策略让球进门一样;二者确实点出了一些关键,但同时也丢掉了对整个图景的认识。

当然,考虑到中学课程安排的需要,上述情形容易理解,然而这种安排所导致的后果也不容小觑。尤其在当今世界,对数学的深度,广度,效力以及局限有一个基本的认识对于每一个人都大有裨益。这些年来,我(指Keith Devlin教授)见过许多数学相关专业的人,比如工程,物理,计算机甚至数学专业本身,他们告诉我,从小学到大学一路学下来,他们还是不知道数学到底是什么。只是在后来偶然的情形,当接触到数学某一部分真正的本质时,他们才开始感受到数学的魅力。

斯坦福大学Keith Devlin教授

不仅仅是算术

当下科技使用的数学,绝大部分是近三百年的成果,有些甚至只有一百年。然而中学的传统课程,却是至少三百年前甚至两千年前的知识。讲授历史如此悠久的内容无可厚非,正如谚语所云:物尽其用。事实上,八九世纪阿拉伯世界商人为提高交易效率而发展的算术依旧有用,区别只在于他们手算我们用电子表格。随着时间推移,社会进步,对新的数学的需求也日渐凸显,相应的教育也应与时俱进。

据研究,数学始于一万年前数和运算的发明,接下来的几个世纪,古埃及人和古巴比伦人在此前基础上发展了几何学和三角学。对上述文明而言,数学就像菜谱,实用为上(“对一个数或一个图先作这个,再作那个,就会得到想要的结果”)。公元前500年到公元300年,数学进入希腊新纪元。古希腊人对几何有特殊的偏爱,他们用线段长度来表示数字,当发现没有数字可对应的长度时(无理数的发现),他们的研究止步了。事实上,数学正是从希腊时期开始被当作一门严肃的研究,不再像以前作为度量或计数技巧而存在。大约公元前500年,米利都的泰勒斯最早引进了现在被公认为数学基石的概念:定理,即数学论断可以通过形式推理得到证明。泰勒斯所指出的道路,在欧几里得的《几何原本》中体现地淋漓尽致,《几何原本》也因此成为继《圣经》之后流传最广的经典。到第一个千禧年的前半页,印度人发明进位制,伊斯兰世界的学者在后半页将其进一步深化,到中世纪欧洲南部掌握了这一方法,此后数学的发展未曾停步,持续至今。与此对照,中学的课程在包含上述内容之外,只增加了两门新课程:初等微积分和初等概率论。也就是说,过去三百年发展起来的学科无一入选中学课程,而我们用的大多数数学正好就是这二三百年发展起来的!

欧几里得的《几何原本》

因此,对数学的认识只局限于中学的人,就不大能理解数学研究其实是一项普世而经久不息的活动,也不会理解数学会像空气一样弥漫在日常生活中。比如很少有人知道,美国哪个机构雇佣了数量最多的数学博士(答案是国家安全局,为其效力的大多数数学家的主要工作是破解密码,以此帮助安全局获取被加密了的信息)。近一百年来数学的发展可谓爆炸式。20世纪初,数学包含十二个子学科:代数,几何,分析以及其他。现在,这个数字增长到60~70,有些子学科比如代数或拓扑,可进一步分为子子学科,其他比如复分析或动力系统,则完全是新领域。数学自二十世纪八十年代以来爆炸式的增长,也革新了我们对数学的认识:数学是研究模式的科学。依据这个认识,数学的任务是界定并分析抽象的模式——数值的模式,形状的模式,运动的模式,表现的模式,选举的模式,可重复的随机性的模式等等。这些模式可以是真实的,也可以是想象的,可以是可见的,也可以不可见,可以是静态的,也可以是动态的,可以是定性的,也可以是定量的,可以是实用的,也可以是好玩的:从实际背景到思维创造,它们可以是世界的任何模式。不同的模式对应不同的数学分支,比如:

●代数与数论研究数和计数的模式

●几何研究形状的模式

●逻辑研究推理的模式

●概率研究随机性的模式

●拓扑研究紧密度和位置关系的模式

●分形理论研究自然界自相似性的模式

数学符号

各种天书般的符号——代数表达式,复杂的公式以及几何图表——是人们对现代数学的基本印象。数学家如此依赖抽象符号,某种程度反映了他们所研究的模式本身的抽象性。现实世界不同的领域需要不同的表示方法,比如研究地形分布或者给初来乍到的人指路,最好是画个地图,而非文字说明。类似地,我们通过城市规划图来定位某个建筑,用曲谱记录乐曲。在分析处理各种抽象的模式和结构时,数学的符号,概念以及程式被证明是最佳的选择。比如我们熟知的加法和乘法的运算律,运用代数符号极其方便有效。我们以加法交换律为例:

(文字形式)两数相加,顺序无关

(代数形式)m+n=n+m

上述例子只是对数学抽象性的惊鸿一瞥。对大部分的数学分支,假如不用抽象的符号,数学将不可避免的繁复。也因此,符号系统伴随数学的发展稳步增长。符号进入数学,一般归功于法国数学家弗朗西斯·韦达。其实,公元250年亚历山大里亚的丢番图就已经开始使用代数符号。他的十三卷经典《算术》(现存6卷)公认是最早的代数教科书。在书中,丢番图用特殊符号代表未知数,未知数的幂以及减法和等号。现在的数学书充斥各种符号,但符号之于数学正如乐谱之于乐曲。一段谱子代表一段曲子,谱子只有被唱出来或者演奏出来才成为灵动的曲子,也就是说,乐曲存在于我们的思维中而非纸上。对数学而言,道理也是如此:符号只是数学的表示,当经过专业人员(这里指受过数学训练的人)的解读,抽象的符号有了意义,数学如交响乐一样回响在读者的脑海中。回到本节开头,再次强调:数学符号的抽象在于数学对象本身的抽象。抽象的数学可以帮助我们理解世界的运行模式。1623年,伽利略写道:

自然这本大书只有掌握它的语言的人方能读懂,这语言就是数学。

数学符号

事实上,物理学可以用数学语言精确地描述。我们用飞机的例子来说明,数学何以帮助我们理解物理定律。喷气式飞机飞行时,我们是看不到任何向上托它的力量的,只有借助数学,我们才能理解那股隐形的力量。而这股力量,最早由十七世纪的伊萨克·牛顿所研究,经过几个世纪数学和工程的持续发展,我们终于能够制造出实际的飞机。这个例子很好地凸显了数学的力量:让不可见变成可见。

大学水准的数学

经过前述对数学历史的回顾,现在我们来说明大学数学与中学数学的本质区别。

大约150年前,虽然当时的数学已远远拓展到数之外的范畴,但数学家依旧认为数学的本质是计算,对数学的精通就意味着能够做复杂计算或者熟练推演符号。大体上,中学数学正是在这样的传统观念中建立起来。直到19世纪,随着数学家攻克更复杂的问题,他们发现直觉并不总是能引导下一步的研究,相反,之前为解决实际问题而发展出来的方法可能会引出违反直觉的结果,比如Banach-Tarski悖论就是一个例子。这个悖论讲的是,理论上,我们可以把一个圆球用某种方式切成小块然后重新组合,就能得到两个(是两个,你没看错)和原来一样大小的圆球。由此开始,数学迈入了只能在其内部理解自身的新阶段。(因为Banach-Tarski悖论在数学上无懈可击,其结论虽然诡异,我们依旧要承认它)类似上述只能在数学上加以说明而不可能借助其他方式验证的结果,促使数学家用数学方法来检验数学本身。19世纪中期开始的这种“内省”,让数学家对数学有了全新认识:数学的重心不再是计算求解,而是理解抽象概念和关系,数学由强调“实操”转变为注重“理解”。数学对象不再局限于特定的函数,而是某一抽象性质的载体,证明不仅仅是按照规则变换对象,而是从概念出发进行逻辑推演。

这次观念革命,彻底改变了数学家对数学的看法。然而对数学家之外的人,世界依旧如常。人们真正感觉到变化,是从大学课程开始。比如说你是一个数学专业的大学生,初次接触“新数学”,结果被折磨地死去活来,你很可能会问候狄利克雷,戴德金,黎曼以及所有其他发明这些该死的知识的人。

黎曼猜想

下面再用一个例子来说明这种转变。十九世纪之前,数学家对函数的普遍看法是,诸如y=x2+3x-5这样给定x生成y的式子是一个函数。然后逆天的狄利克雷出场,他说:忘掉那些式子吧,多想想函数的输入-输出机制。函数,就是能把一个数变成另一个数的法则。这法则,不必非得是代数表达式,甚至,都不必局限在数的范围内:只要能把一类事物变成另一类事物,这样的法则就是函数。

依据这一看法,下面的定义就是一个函数:

x是有理数时,f(x)=0

x是无理数时,f(x)=1

由此开始,数学家转向研究抽象函数的特征而非代数表达式,比如不同的起始值是否总能对应不同的函数值?(这样的性质叫做单射)这条抽象的道路为数学其中一个分支的发展立下了汗马功劳,这个分支即实分析。在实分析中,抽象函数的连续性与可导性是主要研究对象,所使用的“δ-ε(读作“德尔塔-埃普西隆”)定义”,直到今天,仍然是微积分课程的拦路虎。

到十九世纪五十年代,黎曼根据可微性定义复函数,在此之前,伟大的高斯首次把带运算的集合作为数学对象加以研究,由此定义了模剩余类。高斯思想的后继者,戴德金,则进一步研究环,域和理想,而这些概念,也是带某类运算的集合。类似的变化,不一而足。像大多数的变革一样,十九世纪的这次转变也有久远的渊源。古希腊时期,数学就从单纯的计算被提升到思维体操的高度,到十七世纪,微积分的另一发明人,莱布尼茨,则对数学的两方面都进行了研究。即便如此,直到十九世纪数学还是被当作解决问题的手段。生活在今天的数学家可能很难感受当时的冲击,而这场变革就这样悄悄地发生,渐渐地被遗忘,默默地影响数学的走向。本书就是在这样的背景下,怀着为读者提供理解现代数学的思维工具的使命而诞生。

十九世纪后半页的新数学成为大学数学的主旋律,但是高中的数学内容没有受到任何影响,正因如此,你需要一本这样的书(《Introduction to Mathematical Thinking》)来完成思维的转变。事实上,六十年代有过所谓的“新数学”运动,但大学数学系的精神被高中严重曲解,以致运动很快就被叫停。对十八世纪的数学家而言,计算和理解同样重要,十九世纪的革命只是二者孰重孰轻的区别。但六十年代高中老师的解读却是,“忘掉计算,专注理解”,这种荒谬的论调遭到数学家Tom Lehrer的嘲笑,他在自编的歌曲「新数学」中写道:答案不知道,方法最重要。最终,“新数学运动”几年后惨淡收场,退出高中。自由社会的教育政策就是这样,不知道未来会不会再来一次“新数学运动”?我们也不知道社会是否期待这样的改变,教育界就学生是否应该先掌握计算技巧然后再作抽象研究还有广泛的争议。

为什么你应该学数学

至此,你应该明白,数学在十九世纪的变革(从强调计算到注重理解),只局限于以研究数学本质为己任的数学家群体。对于大多数的科学家,工程师以及其他在日常工作中用到数学的人来说,数学只是计算工具,直到今天依旧如此。甚至,计算在今天的重要性和广泛性远超历史的任何时期。因此,在数学家之外的人看来,十九世纪的变革更像是内容的扩张而非焦点的转换。对于今天的大学生,学校期望他们不仅要掌握解决具体问题的技巧,同时也应清楚背后的思想并能从数学上证明他们所使用的方法。

这样的要求是否过分?这难得不应该是数学家的事情么?对于那些只是为了找份好工作而不得不学数学的学生来说(比如工程类专业),为什么也如此高要求?有两个原因(剧透下:只有两个,并且这两个本质上是同样的意思)。

首先,教育不仅仅是职业培训。作为人类伟大文明的成果之一,数学应该和科学,文学,艺术以及历史一道,被当作文明珍宝而一代代传承下来。我们学习不仅仅是为工作和职业,职业技能只是教育给予我们的很小一小部分。这一条毋庸置疑,接下来我们说工作技能的原因。众所周知,很多工作需要数学技能。事实上,大多数行业对数学能力的要求远非我们想象的那么简单,这一点,找工作的同学会有深刻体会。这些年的经验告诉我们,每一次产业升级都会产生巨大的人才缺口,这些人才必须具备相应的数学技能。实际上,如果更细致的考察这些技能,我们可以把它划分为两类。第一类,给定一个数学问题(即实际问题已经被归结为数学模型),解决之。第二类,抛给一个实际问题,比如说制造问题,能否识别出关键因素并用数学语言表述出来(即建模),然后解决之。以往的情况是,社会对第一种技能需求巨大,对第二种需求很小。而数学教育能够培养兼具两种技能的人,虽然主要精力在培养第一种技能,但总会有人脱颖而出,掌握第二种技能。如此皆大欢喜。但在当今社会,随着企业创新加快,第二种技能,即跳出数学框架来思考问题的能力,开始取代第一种技能的地位。顿时,一切都不好了。掌握这种(第二种)技能的人,最关键的,是要对数学的力量,应用范围,何时不可用何时可用以及如何应用有一个整体的认识。在此基础上,他们还需掌握一定程度的,不一定非得精通的数学知识。更重要的是,他们能在跨领域的团队中懂得合作,能够从新的角度看问题,有快速学习能力,然后应用已知方法解决新问题。

那我们应如何培养这样的学生?答案是:注重培养技巧背后的数学思想。古语有云,授人以鱼,不如授之以渔。对新时代的数学教育而言,道理也是如此。因为我们有太多的数学知识,并且新的还在不停增加,小学到大学的16年时间里,不可能全部掌握。即便掌握了,等到大学毕业开始工作时,有些知识已经过时,新的知识又成了风尚。因此,数学教育应该教会学生如何学习。十九世纪数学内部激增的复杂性引发了数学从计算到概念理解的变革,150年之后的今天,在社会变革是由更复杂的数学所推到的背景下,数学那一次变革的重要性就不仅仅是对数学家,而是对所有想应用数学的人!

到现在你应该明白,为什么十九世纪的数学家要转换焦点,同时也应明白,为什么五十年代以来的大学生不仅要会计算也得掌握背后原理。换句话说,你应该明白了大学之所以逼着你学数学的良苦用心,比如能够顺利读完这本书。最后,希望你能够意识到数学对你人生的价值,而不仅仅是通过数学考试这么简单。

(文章转自数学经纬网网页链接)

真正的数学思维培养目标是发展孩子思维的速度、角度、精度和深度。它不是计算,不是珠心算,是教会孩子思考问题的方式,解决问题的方式。
通俗点讲是给孩子的大脑安装一个高配的底层操作系统。就像电脑和手机的出场配置一样,有了这个高配系统,你学什么都不在话下。可能很多人都有这样的经历,班里总有那么一两个孩子脑子超级灵,一道题有好几种解法,可自己一换题目就没头绪了。这就是思维的差异。
曾经在芥末堆GET大会上听了“你拍一”数理思维创始人关于数学思维训练的发言。
他先问:如果你的孩子在脑、口、手三大能力中只能选一个,你选哪个?
现场所有人都选择“脑”,也就是思维能力。如果不能一种语言,可以有翻译;如果不能动手,可以请人帮忙。可如果脑不行,那谁能代替。
唐振华举例说,科学家霍金全身瘫痪,还失去了语言能力,但依靠聪明的大脑,改变了物理学的面貌,成为爱因斯坦之后最伟大的物理学家。
传统的数学启蒙、同步辅导,不少课外培训,幼小衔接、学前教育,他们的数学培训本质上是“记忆”,比如让小孩子做20以内的加减法,就让他们强化记忆,3+3等于几,3+4等于几,这种方法其实不太涉及到思维的训练,主要是记忆力的训练,熟练度的训练。
这样的孩子只会考试,而不能真正的理解数学本质,学不会思考,也就是所谓的“高分低能”问题源头。
一般的数学思维包括:逻辑思维,数理思维,综合思维能力,概括思维能力,抽象思维能力、创造性思维能力等等
逻辑思维:对于需要陈述的问题一定要逻辑性强,尤其是涉及到官司方面,阐述一定得逻辑性强
数理思维:日常生活中的买卖行为,经济投资行为,财务行为等等都必须要求一定的数理思维
综合思维能力:日常生活中考虑问题不能单一化,片面化,要综合各种可能的因素进行思考问题
概括思维能力:对于得到的许多的零散的信息进行概括处理
抽象思维能力:对于一些从没见过的或者从没经历过的事物或者事情的想象力
创造思维能力:世界没有创造思维,还能进步吗?

【数与形的概念】数学发展的历史

文章摘要:

数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的.数学发展史中—直存在着数与形两条并行不悖的发展路线,一条以发展计算为中心的算术代数路线,一条以发展形为主的几何路线,前者有两个源头,一个源头是独立发展的中国数学,另一源头是古巴比伦数…

【编者按】

数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史。数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。了解数学的发展历史有助于培养学生对学习数学的兴趣,下面的内容希望对他们能有所帮助!

数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的。数学发展史中—直存在着数与形两条并行不悖的发展路线,一条以发展计算为中心的算术代数路线,一条以发展形为主的几何路线,前者有两个源头,一个源头是独立发展的中国数学,另一源头是古巴比伦数学。

这一路线在古希腊亚里山大里亚时期进一步得到发展,在中国、印度和阿拉伯国家发扬光大,到17世纪的欧洲才形成完整的初等代数学。

“形”的路线是以埃及数学为源头,在古希腊取得辉煌成就的初等几何学。这两种数学在17世纪在欧洲汇合,经过进一步发展,导致了解析几何的产生,产生了变量数学。随后由于微积分的产生,开始了数学的巨大变革,产生了数学分析这一厂“阔的领域,形成了代数、几何、分析三足鼎立的形势。

18、19世纪由于数学的不断分化,代数、几何、分析形成了各自不同的研究领域.数学研究的对象日益扩展,数与形的概念不断扩大,日趋抽象化,以至不再有任何原始计算与简单图形的踪影了。

几何不仅研究物质世界的空间形式,而且研究同空间形式和关系相似的其他形式和关系,产生了各种新“空间”:罗巴切夫斯基空间、射影空间、四维的黎曼空间、各种拓扑空间等都成为几何研究的对象。现代化数学所考察的对象是具有更普遍的“量”,如向量、矩阵、张量、旋量、超复数、群等,并且研究这些量的运算。

这些运算在某种程度上和算术中的四则运算类似,但复杂得多。矢量是简单的例子,矢量的加法是按照平行四边形法则相加的。在现代代数中进行的抽象达到这样的程度,以致“量”这个术语也失去本身的意义,而一般地变成讨论“对象”了。

对于这种“对象”可以进行同普通代数运算相似的运算.比如,两个相继进行的运动相当于一个总的运动,—公式的两种代数变换相当于一个总的变换等等。

和这相应,可研究运动或变换所特有的一类“加法”.其他类似的运算也是这样在广泛抽象形式上研究的。分析的对象也大大发展。不但“数”是变的,在泛函分析中,函数本身也被看作是变的。

某一给定函数的性质在这里不能单独地确定,而是在这个函数对另外一些函数的关系上确定的。因此考察的已经不是一些单个的函数,而是所有以这种或那种共同性质作为特征的函数的集合。函数的这种集合结合成“函数空间”。

比如,考察平面上所有曲线的集合或一定力学系统的所有可能运动的集合,在单个曲线或运动用其他曲线或运动的关系上来确定曲线或运动的性质.现代数学常用的方法,是把一个个函数看作一个个“点”,而某类函数的全体看作一个“空间”,函数间的相异程度看作“点”之间的“距离”,由此得到各种无穷维的函数空间。

比如一个微分积分方程组的求解,往往归结为相应函数空间中一个几何变换的不动点问题.数学对象的扩展使得数学应用的范围也大大扩展了。数学观念广泛引入物理学中,爱因斯坦把黎曼几何应用到广义相对论,冯·诺伊曼把希尔伯特空间应用到量子力学,杨振宁和米尔斯把纤维丛理论应用到规范场等等。

从19世纪下半叶开始,即从克莱因用“群”的观点统各种度量几何开始,到康托尔建立集合论和公理化运动后,数学走向综合的趋势越来越明显。现代数学的发展促使数和形的概念不断深化,形成了多种多样的边缘学科。这些学科不仅没有加深各学科间的分离,而且导致了各学科的互相联系和渗透,使以前基本分离的领域互相沟通了起来,并且填满了基本学科之间中断了的部分。

各门学科形成了一个牢固联系的有机整体。边缘学科不仅在相互邻接的领域产生。

而且在相距很远的领域之间也不断发生,基础学科相互渗透产生了许多综合性学科。综合性学科的出现和蓬勃发展,标志着现代数学的发展已由学科领先阶段过渡到课题领先的新阶段。各学科之间的相互渗透,是数学中数和形两大基本概念紧密联系在一起的辩证法的反映。

各门科学的数学化,使得数学和其他学科交叉结合,产生许多交叉学科,许多学科又派生出许多小的学科分支,这些分支学科不仅促进了各门学科的发展,而且也丰富和发展了数学学科本身。

然而,不管数学各个学科经历着怎样的分、合、变、革,也不管数学内部怎样此消彼长,数学王国的疆土虽然在不断扩张之中,但始终是由数与形两大基本概念所控制。(内容摘自共读一本书-《数学史海览胜》)

文章摘要:19世纪前期,考古学家在美索不达米亚挖掘出大约 50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板,上面密密麻麻地刻有奇怪的符号,经研究其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板。…

【编者按】 19世纪前期,考古学家在美索不达米亚挖掘出大约 50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板,上面密密麻麻地刻有奇怪的符号,经研究其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板。

考古学家在十九世纪上半叶于美索不达米亚挖掘出大约50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板。这些泥书板上有着密密麻麻的奇怪的符号,这些符号实际上就是巴比伦人所用的文字,人们称它为“楔形文字”。科学家经过研究发现,泥版上记载的,是巴比伦人已获得的知识,其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板,现在关于巴比伦的数学知识就源于分析这些原始文献。

算术

古代巴比伦人是具有高度计算技巧的计算家,其计算程序是借助乘法表、倒数表、平方表、立方表等数表来实现的。巴比伦人书写数字的方法,更值得我们注意。他们引入了以60为基底的位值制(60进制),希腊人、欧洲人直到16世纪亦将这系统运用于数学计算和天文学计算中,直至现在60进制仍被应用于角度、时间等记录上。比如,1米=10分米,1分钟=60秒等。

代数

古巴比伦人有丰富的代数知识,许多泥书板中载有一次和二次方程的问题,他们解二次方程的过程与今天的配方法、公式法一致。此外,他们还讨论了某些三次方程和含多个未知量的线性方程组问题。

在1900B.C.~1600B.C.年间的一块泥板上(普林顿322号),记录了一个数表,经研究发现其中有两组数分别是边长为整数的直角三角形斜边边长和一个直角边边长,由此推出另一个直角边边长,亦即得出不定方程x2 y2=z2的整数解。

几何

古巴比伦的几何学与实际测量是有密切的联系。他们已有相似三角形之对应边成比例的知识,会计算简单平面图形的面积和简单立体体积。我们现在把圆周分为360等分,也应归功于古代巴比伦人。巴比伦几何学的主要特征更在于它的代数性质。例如,涉及平行于直角三角形一条边的横截线问题引出了二次方程;讨论棱椎的平头截体的体积时出现了三次方程。

古巴比伦的数学成就在早期文明中达到了极高的水平,但积累的知识仅仅是观察和经验的结果,还缺乏理论上的依据。

文章摘要:算术和代数是数学中最基础而又最古老的分支学科,两者有着密切的联系。算术是代数的基础,代数由算术演进而来。从算术演进到代数,是数学在思想方法上发生的一次重大突破。

【编者按】数学的发展并不是一些新概念、新命题、新方法的简单积累,它包含着数学本身许多根本的变化,也即质的飞跃。历史上发生的数学思想方法的几次重大突破,就充分说明了这一点。

算术和代数是数学中最基础而又最古老的分支学科,两者有着密切的联系。算术是代数的基础,代数由算术演进而来。从算术演进到代数,是数学在思想方法上发生的一次重大突破。

一、代数学产生的历史必然性

代数学作为数学的一个研究领域,其最初而又最基础的分支是初等代数。初等代数研究的对象是代数式的运算和方程的求解。从历史上看,初等代数是算术发展的继续和推广,算术自身运动的矛盾以及社会实践发展的需要,为初等代数的产生提供了前提和基础。

我们知道,算术的主要内容是自然数、分数和小数的性质与四则运算。算术的产生,表明人类在现实世界数量关系认识上迈出了具有决定性意义的第一步。算术是人类社会实践活动中不可缺少的数学工具,在人类社会各部门都有广泛而重要的应用,离开算术这一数学工具,科学技术的进步几乎难以相象。

在算术的发展过程中,由于算术理论和实践发展的要求,提出了许多新问题,其中一个重要问题就是算术解题法的局限性在很大程度上限制了数学的应用范围。

算术解题法的局限性,主要表现在它只限于对具体的、已知的数进行运算,不允许有抽象的、未知的数参加运算。也就是说,利用算术解应用题时,首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过加、减、乘、除四则运算求出算式的结果。

许多古老的数学应用问题,如行程问题、工程问题、流水问题、分配问题、盈亏问题等,都是借助这种方法求解的。算术解题法的关键是正确地列出算术,即通过加、减、乘、除符号把有关的已知数据连结起来,建立能够反映实际问题本质特征的数学模型。

对于那些只具有简单数量关系的实际问题,列出相应的算式并不难,但对于那些具有复杂数量关系的实际问题,在列出相应的算式,往往就不是一件容易的事了,有时需要很高的技巧才行。特别是对于那些含有几个未知数的实际问题,要想通过建立已知数的算式来求解,有时甚至是不可能的。

算术自身运算的局限性,不仅限制了数学的应用,而且也影响和束缚了数学自身的继续发展。随着数学自身和社会实践的深入发展,算术解题法的局限性日益暴露出来,于是一种新的解题法-代数解题法的产生也就成为历史的必然。

代数解题法的基本思想是,首先依据问题的条件组成包含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。初等代数的中心内容是解方程,因而通常把初等代数理解为解方程的科学。

初等代数与算术的根本区别,在于前者允许把未知数作为运算的对象,后者则把未知数排斥在运算之外。如果说在算术中也论及某个未知数的话,那么,这个未知数也只能起运算结果符号等价物的作用,只能单独地处在等式的左边,静等等式右边的算式完成对具体数字的演算。

也就是说,在算术中,未知数没有参加运算的权利。而在代数中,方程作为由已知数和未知数构成的条件等式,本身就意味着其中所包含的已知数和未知数有着同等的运算地位,即未知数也变成了运算的对象,和已知数一样,它们可以参与各种运算,并可以依照某种法则从乘式的一边移到另一边。

解方程的过程,实质上就是通过对已知数和未知数的重新组合,把未知数转化为已知数的过程,即把未知数置于等式的一边,已知数置于等式的另一边。从这种意义上看,算术运算不过是代数运算的特殊情况,代数运算是算术运算的发展和推广。

由于代数运算具有较大的普遍性和灵活性,因而代数的产生极大地扩展了数学的应用范围,许多算术无能为力的问题,在代数中却能轻而易举地得到解决。不仅如此,代数学的产生对整个数学的进程产生巨大而深远的影响,许多重大发现都与代数的思想方法有关。

例如,对二次方程的求解,导致虚数的发现;对五次以上方程的求解,导致群论的诞生;把代数应用于几何问题,导致解析几何的创立等等。正因为如此,我们把代数的产生作为数学思想方法发生第一次重大转折的标志。

二、代数学体系结构的形成

“代数”一词,原意是指“解方程的科学”。因此,最初的代数学也就是初等代数。初等代数,作为一门独立的数学分支学科,其形成经历了一个漫长的历史过程,我们很难以某一个具体的年代作为它问世的标志。从历史上看,它大体上经过了三个不同的阶段:文词代数,即用文字语言来表述运算对象和过程;简字代数,即用简化了的文词来表示运算内容和步骤;符号代数,即普遍使用抽象的字母符号。

从文词代数演进到符号代数的过程,也就是初等代数由不成熟到较为成熟的发育过程。在这个过程中,17世纪法国数学家笛卡尔做出了突出贡献。他是第一个提倡用x、y、z代表未知数的人,他提出和使用的许多符号,同现代的写法基本一致。

随着数学的发展和社会实践的深化,代数学的研究对象不断得到扩大,其思想方法不断得到创新,代数学也就由低级形态演进到高级形态,由初等代数发展到高等代数。高等代数有着丰富的内容和众多的分支学科,其中最基本的分支学科有如下几个。

线性代数:讨论线性方程(一次方程)的代数部分,其重要工具是行列式和矩阵。

多项式代数:主要借助多项式的性质来讨论代数方程的根的计算和分布,包括整除性理论、最大公因式、因式分解定理、重因式等内容。

群论:研究群的性质的代数学分支学科,属于抽象代数的一个领域。群是带有一种运算的抽象代数系统。群的概念是19世纪初由法国青年数学家伽罗华最先提出的,伽罗华由此成为群论的创立者。群论发展到现在,已经获得丰富的内容和广泛的应用。

环论:研究环的性质的代数学分支学科,是正在发展着的一个抽象代数领域。环是带有二种运算的抽象代数系统,有许多独特的性质。一种特殊的环称为域,如果域的元素是数,则称为数域。以域的概念为基础,形成了抽象代数学的另一个领域-域论。

布尔代数:也称二值代数、逻辑代数或开关代数,是带有三种运算的抽象代数系统。由英国数学家布尔于19世纪40年代创立。近几十年来,布尔代数在线路设计、自动化系统和电子计算机设计方面得到广泛应用。

此外,还有格论、李代数和同调代数等分支学科。

高等代数与初等代数在思想方法上有很大的差别。初等代数属于计算性的,并且只限于研究实数和复数等特定的数系,而高等代数是概念性、公理化的,它的对象是一般的抽象代数系统。因此,高等代数比初等代数具有更高的抽象性和更大的普遍性,这就使高等代数的应用范围更加广泛。向抽象性和普遍性方向发展,是现代代数学的一个重要特征。

程晓龙,第40届IMO(1999年,罗马尼亚布加勒斯特)金牌获得者。

熟悉了高中数学,就会觉得它所介绍的理论并不多,《代数》就是讲函数的观点和初等函数的性质、三角函数、复数、复向量的运算,数列和归纳原理、计数方法。《解析几何》介绍用数量化语言描述几何图形的方法和几种常用几何图形的数量性质。《立体几何》描述空间中点、线、面的位置、度量关系并着重介绍几种基本几何体。要学好高中数学,就应该对这些知识有整体的认识和把握,即理解他们所解决的问题在数学乃至实际中所起的作用。

学习数学绝不是死记定理、公式,不是空洞的解题训练,仅注重其形式化的表面,是无法把握数学的实质的。数学的存在和发展是基于某种实际需要的,了解这种需要,即数学各部分的作用,有助于对数学这个有机整体的认识,不假思索的接受,难以导致对数学的真正了解,因此亲身接触活生生的数学就显得尤为重要。

这就需要学习中对每个问题都能亲自思考、透彻理解。我通常习惯于在遇到新概念时,自己先分析、推导一下它的性质;碰到定理、公式时自己先试着证明一下,这样再学习书本上的内容时,与自己所思考的有种比较,对知识的体会就更多些,理解也能更深一点。

比如说,这样做后就会比较清楚某个定理为什么会有这样的限制条件,在那些情况下适用等。清楚了逻辑上的推理之后,还应回过头来从总体上考虑一下这些结论,考虑一下它们所描述的事实与其它数学知识间的依赖关系。这样做也有助于从宏观上把握知识,对其主要观念有更深刻的领悟,最好是在一个部分的知识学完后,能花点时间整理一下这部分理论,理顺其主要知识点间的联系。

这不是简单的复习,而是确定这些东西成为你自己的知识。它不是单纯的看书,而应该是了解之后的深入思考,甚至你可以撇开课本,仅仅靠思考和必要的演算来完成这一过程,尤其是在平时学习中,每次都是只对一小部分知识学习、做作业,比较零散,这种整体上的熟悉就显得很必要了。

必要的习题不仅能帮助熟悉所学的知识,有些甚至能帮助理解所学的概念、定理,发掘知识更深层次上的内涵。它的另一个作用,即练习本身的作用,就是锻炼思维,而做完题之后的思考无论是对上述那一个方面都是大有裨益的,这就是做题不要局限于解决问题本身,有时可以想想问题所反映的结论,体会一下用到的方法和技巧,重要的是要明白为什么要用这种方法,即能理解方法的实质。

做习题切不可因追求过多而忽略之后的反思,否则经常会出现一些无谓的反复,反而得不偿失。另外一点,就是要从不同的角度思考问题,不满足于已有的方法,即使已有的方法是最简的。从其它角度思考、解决问题能导致一些新的收获,这一点在做难度稍大的题时会更有用处。

有些人学数学只是记下所有的定理公式,各类题型和相应的解法,这样做在学的知识比较少的时候也许还能对付,但一旦内容多了,就很难理清头绪。而掌握基本的解题思想方法却相对容易的多。一道题目的解答或许很长,但最主要的解题思想可能就只有一两条,大部分篇幅都是推理或运算。

而且思想方法对数学的不同部分来说都是相通的,掌握它才是根本,才是应万变之策。解题方法绝不是毫无根据的灵感,必是解决问题过程中深思熟虑后应运而生的途径。因而,对解题方法,重要的是理解这种思维过程,即要透过现象看本质,思想方法源于解题的过程中,也只有通过解题过程中的独立思考、分析摸索才能掌握。

如果有朝一日,你发现自己对数学中的知识理论和思想方法都了然于胸,那么你已经能很好地驾驭所学的知识了,再加上一些过硬的基本功,已足以应付一般的考试,但对于一个要真正学好数学的人来说,这些却远远不够。众所周知,数学需要严密的逻辑推理,但逻辑上的推理却不足以代表数学的全部。

如本世纪的大数学家柯朗所说:“过分着重演绎一公式的数学特性可能失之偏颇,创造性发明以及起指导和推动作用的直觉的要素才是数学理论的核心。”数学很重要的几个因素就是就是逻辑与直觉、分析与创造、一般性与个别性,正是他们的综合交错作用才构成数学的丰富内涵。要学好数学,只有将自己置身于其中,亲自去体会、去发现。

得数学者,得天下的传说,没有天赋数学就一定学不好?

不知何时,数学似乎成了一条不可逾越的鸿沟,悄然将人类分成两个波。其中一种是热爱数学的,并且学起来很轻松,另一种是不管怎么努力都学不会。

第一个系统称为“小精准数认知能力”,即鉴别1、2、3等小精准数;第二种系统称为“大可能认知能力”,即根据可能来区别100、200等数字;第三种系统称为“数字语言”,即用数学标记来形容事情;后2个系统是室内空间自然地理能力,即室内空间想像能力和相对位置记忆力能力。

普通高中数学假如你常说,的确必须一定的天资,逻辑思维能力不好的,较多把基本题保证极致,可以拿绝大多数成绩,可是后边两条拉分的题就大部分做不会起了。这一太必须明辨和转移能力,不然再好也没有用刷题也没有用。

大部分小孩在课堂上都能够积极主动的参加进去,授课积极主动用心的解答问题,回家了后还可以积极进行好各科的工作。针对许多小孩而言,基本上的学习任务全是可以不错的进行。但唯有数学,也许课上、课后练习可以不错的进行当日的学习内容,可是成绩便是不理想化,她们也会为了更好地提高成绩挑选多训练或是补习,但成效也是一般。

可是在数学这儿不一样,勤奋和收益不是正相关的,由于不论是我还是我们家果汁机老先生,目前为止历经的那些事情和见过的那些人,都无一不再告知大家一个严酷的客观事实——数学的命,命中注定,你能用人力资源挣脱的那一部分,确实是十分比较有限。

尽管大家觉得上,勤奋多做训练多做题,就可以让数学成绩提高,可是这类提高实际上非常大程度上仅仅提高了应考方法,却没法解救一个人理解数学的能力,由于这门课程实质上也是一个大比拼头脑的神仙游戏。

要是没有数学天资,仅仅感觉自已不太勤奋,方式不对,习题太少,那为什么针对他人看一眼就能知晓结果的题型,就算让你正确答案你也没法了解呢?你一天到晚认真学习,但她们一天到晚打游戏,她们的成绩或是比您好?全国高考状元和平常人全是人,为什么差别这么大?

当然是并不一定的。因为本身成功就是99%的努力加1%的天赋。所以只要你自己是足够努力的,就一定能够把数学学的很好。
并不是的,只是说有数学学习的天赋,相对来说更省力一点,对于没有数学天赋的话,就一定要多下功夫,注意知识的整合,掌握一些基础的知识,还要学习一些相关的答题技巧,掌握适合自己的学习方法。
我觉得也不一定因为数学完全可以靠后天的努力,我们要好好的去学习基础的知识,并且多做一些题目。
本文标题: 有人说「数学的进步不是由无数群众推动的,而是从古至今极个别人才个人能力推动前进的」,你怎么看
本文地址: http://www.lzmy123.com/jingdianwenzhang/232752.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    英语师范和历史师范哪个比较好为何联邦制在中国行不通在外国却可以
    Top