杠杆平衡的原理不要公式,原因讲一下杠杆原理就是“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力...

拿一根足够长的杆,用手拿住它的一端,迅速挥舞它,不考虑阻力等其他因素,杆的另一端能否达到光速

杠杆平衡的原理

不要公式,原因讲一下

杠杆原理就是“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中。

F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。

扩展资料:

在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆,如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。

杠杆原理基本有3种类型,第一类的杠杆例子是天平、剪刀、钳子等,第二类杠杆的例子是开瓶器、胡桃夹,第三类杠杆如锤子、镊子等。 杠杆分为3种杠杆。第一种是省力的杠杆,如:开瓶器等。第二种是费力的杠杆,如:镊子等。第三种是既不省力也不费力的杠杆,如天平等。

参考资料来源:百度百科-杠杆平衡

在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂) * 施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
编辑本段杠杆分类
杠杆可分为省力杠杆、费力杠杆和等臂杠杆。这几类杠杆有如下特征:
1.省力杠杆:L1>L2, F1<F2 ,省力、费距离。如拔钉子用的羊角锤、铡刀,瓶盖扳子等。
2.费力杠杆: L1<L2, F1>F2,费力、省距离,如钓鱼竿、镊子等。
3.等臂杠杆: L1=L2, F1=F2,既不省力也不费力,又不多移动距离,如天平、定滑轮等。
编辑本段人体内的杠杆
几乎每一台机器中都少不了杠杆,就是在人体中也有许许多多的杠杆在起作用。拿起一件东西,弯一下腰,甚至翘一下脚尖都是人体的杠杆在起作用,了解了人体的杠杆不仅可以增长物理知识,还能学会许多生理知识。
其中,大部分为费力杠杆,也有小部分是等臂和省力杠杆。
点一下头或抬一下头是靠杠杆的作用(见图),杠杆的支点在脊柱之顶,支点前后各有肌肉,头颅的重量是阻力。支点前后的肌肉配合起来,有的收缩有的拉长配合起来形成低头仰头,从图里可以看出来低头比仰头要省力。
当曲肘把重物举起来的时候,手臂也是一个杠杆(如图)。肘关节是支点,支点左右都有肌肉。这是一种费力杠杆,举起一份的重量,肌肉要化费6倍以上的力气,虽然费力,但是可以省一定距离。
当你把脚尖翘起来的时候,是脚跟后面的肌肉在起作用,脚尖是支点,体重落在两者之间。这是一个省力杠杆(如图),肌肉的拉力比体重要小。而且脚越长越省力。
如果你弯一下腰,肌肉就要付出接近1200牛顿的拉力。这是 由于在腰部肌肉和脊骨之间形成的杠杆也是一个费力杠杆(如图)。 所以在弯腰提起立物时,正确的姿式是尽量使重物离身体近一 些。以避免肌肉被拉伤。
编辑本段发现历程
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。"
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水。在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的,而且墨子的发现比阿基米德早了约二百年。
历史故事
阿基米德将自己锁在一间小屋里, 正夜以继日地埋头写作《浮体论》.这天突然闯进一个人来, 一进门就连忙喊道: ‘哎呀! 你老先生原来躲在这里.国王正调动大批人马, 在全城四处找你呢.’阿基米德认出他是朝廷大臣, 心想, 外面一定出了大事.他立即收拾起羊皮书稿, 伸手抓过一顶圆壳小帽, 随大臣一同出去, 直奔王宫.
当他们来到宫殿前阶下时, 就看见各种马车停了一片, 卫兵们银枪铁盔, 站立两行, 殿内文武满座, 鸦雀无声.国王正焦急地在地毯上来回踱步.由于殿内阴暗, 天还没黑就燃起了高高的烛台.灯下长条案上摆着海防图、陆防图.阿基米德看着这一切, 就知道他最担心的战争终于爆发了.
原来地中海沿岸在古希腊衰落之后, 先是马其顿王朝的兴起, 马其顿王朝衰落后, 接着是罗马王朝兴起.罗马人统一了意大利本土后向西扩张, 遇到另一强国迦太基.公元前264 年到公元前221 年两国打了23 年仗, 这是历史上有名的‘第一次布匿战争’, 罗马人取得胜利.公元前218 年开始又打了4 年, 这是‘第二次布匿战争’, 这次迦太基起用一个奴隶出身的军事家汉尼拔, 一举擒获罗马人5 万余众.地中海沿岸的两个强国就这样连年争战, 双方均有胜负.叙拉古, 则是个夹在迦、罗两个强国中的城邦小国, 在这种长期的战争风云中, 常常随着两个强国的胜负而弃弱附强, 飘忽不定.阿基米德对这种外交策略很不放心, 曾多次告诫国王, 不要惹祸上身.可是现在的国王已不是那个阿基米德的好友亥尼洛.他年少无知, 却又刚愎自用.当‘第二次布匿战争’爆发后, 公元前216 年, 眼看迦太基人将要打败罗马人, 国王很快就和罗马人决裂了, 与迦太基人结成了同盟, 罗马人对此举很恼火.现在罗马人又打了胜仗, 于是采取了报复的行动, 从海陆两路向这个城邦小国攻过来, 国王吓得没了主意.当他看到阿基米德从外面进来, 连忙迎上前去, 恨不得立即向他下跪, 说道: ‘啊, 亲爱的阿基米德, 你是一个最聪明的人, 先王在世时说过你都能推动地球.’
关于阿基米德推动地球的说法, 却还是他在亚历山大里亚留学时候的事.当时他从埃及农民提水用的吊杆和奴隶们撬石头用的撬棍受到启发, 发现可以借助一种杠杆来达到省力的目的, 而且发现, 手握的地方到支点的这一段距离越长, 就越省力气.由此他提出了这样一个定理: 力臂和力 (重量) 的关系成反比例.这就是杠杆原理.用我们现在的表达方式表述就是: 重量×重臂=力×力臂.为此, 他曾给当时的国王亥尼洛写信说: ‘我不费吹灰之力, 就可以随便移动任何重量的东西;只要给我一个支点, 给我一根足够长的杠杆, 我连地球都可以推动.’可现在这个小国王并不懂得什么叫科学, 他只知道在大难临头的时候, 借助阿基米德的神力来救他的驾.
可是罗马军队实在太厉害了.他们作战时列成方队, 前面和两侧的士兵将盾牌护着身子, 中间的士兵将盾牌举在头上, 战鼓一响这一个个方队就如同现代的坦克一样, 向敌方阵营步步推进, 任你乱箭射来也丝毫无损.罗马军队还有特别严明的军纪, 发现临阵脱逃的立即处死, 士兵立功晋级, 统帅获胜返回罗马时要举行隆重的凯旋仪式.这支军队称霸地中海, 所向无敌, 一个小小的叙拉古哪里放在眼里.况且旧恨新仇, 早想进行一次彻底清算.这时由罗马执政官马赛拉斯统帅的四个陆军军团已经挺进到了叙拉古城的西北.现在城外已是鼓声齐鸣, 杀声震天了.在这危急的关头, 阿基米德虽然对因国王目光短浅造成的这场祸灾非常不满, 但木已成舟, 国家为重, 他扫了一眼沉闷的大殿, 捻着银白的胡须说: ‘如果单靠军事实力, 我们决不是罗马人的对手.现在若能造出一种新式武器来, 或许还可守住城池, 以待援兵.’国王一听这话, 立即转忧为喜说: ‘先王在世时早就说过, 凡是你说的, 大家都要相信.这场守卫战就由你全权指挥吧.’
两天以后, 天刚拂晓, 罗马统帅马赛拉斯指挥着他那严密整齐的方阵向护城河攻来.今天方阵两边还预备了铁甲骑兵, 方阵内强壮的士兵肩扛着云梯.马赛拉斯在出发前曾口出狂言: ‘攻破叙拉古, 到城里吃午饭去.’在喊杀声中, 方阵慢慢向前蠕动.照常规, 城头上早该放箭了.可今天城墙上却是静悄悄地不见一人.也许是几天来的恶战使叙拉古人筋疲力尽了吧.罗马人正在疑惑, 城里隐约传来吱吱呀呀的响声, 接着城头上就飞出大大小小的石块, 开始时大小如碗如拳一般, 以后越来越大, 简直有如锅盆, 山洪般地倾泻下来.石头落在敌人阵中, 士兵们连忙举盾护体, 谁知石头又重, 速度又急, 一下子连盾带人都砸成一团肉泥.罗马人渐渐支持不住了, 连滚带爬地逃命.这时叙拉古的城头又射出了密集的利箭, 罗马人的背后无盾牌和铁甲抵挡, 那利箭直穿背股, 哭天喊地, 好不凄惨.
阿基米德到底造出了什么秘密武器让罗马人大败而归呢? 原来他制造了一些特大的弩弓——发石机.这么大的弓, 人是根本拉不动的, 他就利用了杠杆原理.只要将弩上转轴的摇柄用力扳动, 那与摇柄相连的牛筋又拉紧许多根牛筋组成的粗弓弦, 拉到最紧时, 再突然一放, 弓弦就带动载石装置, 把石头高高地抛出城外, 可落在1000 多米远的地方.原来这杠杆原理并不是简单使用一根直棍撬东西.比如水井上的辘轳吧, 它的支点是辘轳的轴心, 重臂是辘轳的半径, 它的力臂是摇柄, 摇柄一定要比辘轳的半径长, 打起水来就很省力.阿基米德的发石机也是运用这个原理.罗马人哪里知道叙拉古城有这许多新玩艺儿.
就在马赛拉斯刚被打败不久, 海军统帅古劳狄乌斯也派人送来了战报.原来, 当陆军从西北攻城时, 罗马海军从东南海面上也发动了攻势.罗马海军原来并不十分厉害, 后来发明了一种舷钩装在船上, 遇到敌舰时钩住对方, 士兵们再跃上敌舰, 变海战为陆战, 占一定的优势.今天克劳狄乌斯为了对付叙拉古还特意将兵舰包上了一层铁甲, 准备了云梯, 并号令士兵, 只许前进, 不许后退.奇怪的是, 这天叙拉古的城头却分外安静, 墙的后面看不到一卒一兵, 只是远远望见几副木头架子立在城头.当罗马战船开到城下, 士兵们拿着云梯正要往墙上搭的时候, 突然那些木架上垂下来一条条铁链, 链头上有铁钩、铁爪, 钩住了罗马海军的战船.任水兵们怎样使劲划桨都徒劳无功, 那战船再也不能挪动半步.他们用刀砍, 用火烧, 大铁链分毫无损.正当船上一片惊慌时.只见大木架上的木轮又‘嘎嘎’地转动起来, 接着铁链越拉越紧, 船渐渐地被吊起离开了水面.随着船身的倾斜, 士兵们纷纷掉进了海里, 桅杆也被折断了.船身被吊到半空后, 这个大木架还会左右转动, 于是那一艘艘战舰就像荡秋千一样在空中摇荡, 然后有的被摔到城墙上或礁石上, 成了堆碎片;有的被吊过城墙, 成了叙拉古人的战利品.这时叙拉古的城头上还是静悄悄的, 没有人射箭, 也没有人呐喊, 好像是座空城, 只有那几副怪物似的木架, 不时伸下一个个大钩钩走一艘艘战船.罗马人看着这‘嘎嘎’作响的怪物, 吓得全身哆嗦, 手腿发软, 只听到海面上一片哭喊声和落水碰石后的呼救声.克劳狄乌斯在战报中说: ‘我们根本着不见敌人, 就像在和一只木桶打仗.’阿基米德的这些‘怪物’原来也是利用了杠杆原理, 并加了滑轮.
经过这场大战, 罗马人损兵折将, 还白白丢了许多武器和战船, 可是却连阿基米德的面都没见到.
编辑本段实例演示
杠杆原理基本有3种类型,第一类的杠杆例子是天平、剪刀、钳子等,第二类杠杆的例子是开瓶器、胡桃夹,第三类杠杆如锤子、镊子等。
杠杆分为3种杠杆。第一种是省力的杠杆,如:开瓶器等。第二种是费力的杠杆,如:镊子等。第三种是既不省力也不费力的杠杆,如:天平、钓鱼竿等。
关于——
阿基米德能举起地球吗?
“给我一个支点,我就能举起地球”,相传这是古代发现杠杆原理的阿基米德说的话。
阿基米德知道,如果利用杠杆,就能用一个最小的力,把无论怎样重的东西举起来,只要把这个力放在杠杆的长臂上,而让短臂对重物起作用。因此,他的手就可以举起质量等于地球的重物。
然而如果这个古代伟大科学家知道地球的质量是多么大,他也许就不会这样夸口了。让我们设想阿基米德真的找到了另一个地球做支点;再设想他也做成了一根够长的杠杆。你知道他得用多少时间才能把质量等于地球的一个重物举起,哪怕只举起1cm呢?至少要30万亿年!
原来地球的质量天文学家是知道的。质量这样大的物体,如果把它拿到地球上称的话,它的重量大约是:6 000 000 000 000 000 000 000t。
如果一个人只能直接举起60kg的重物,那么他要“举起地球”,就得把自己的手放在一根这样长的杠杆上,他的长臂应当等于它的短臂的100 000 000 000 000 000 000倍!
简单地计算一下就可以知道,在短臂的那一头举高1cm,就得把长臂那一头在宇宙空间里画一个大弧形,弧的长度大约是:1 000 000 000 000 000 000km。
这就是说,阿基米德如果要把地球举起1cm,他那扶着杠杆的手就得移动大到这样不可想象的一个距离!那么他要用多少时间才能做完这件事呢?如果我们认为阿基米德能在一秒种里把60kg的重物举高一米(这种工作能力已经几乎等于一马力!),那么,他要把地球举起1cm,就得用去100 000 000 000 000 000 000S,或三十万亿年!可见阿基米德无法完成这个任
务。
杠杆论文
一根长为4米的一头粗一头细的木棒,在距粗端1米处支住它可以平衡;如果在距粗端2 米处支住,且在另一端挂20N的重物,杠杆仍可平衡,那么这根棒重为多少?
在距粗端1米处支住它可以平衡说明了他的重心在距粗端1米处.
如果在距粗端2 米处支住,且在另一端挂20N的重物,杠杆仍可平衡,F1*L1=F2*L2得:
G*1m=20N*2m
解得:G=40N
所以,这根棒重为40N。
是问为什么平衡吗?天平知道吧,它是中间一个支点,两边各伸出一个臂,长度一样,它也是杠杆,只不过特殊点,是等臂的,两边放上同样重的东西不用想杠杆原理也知道就平衡啦。

我猜大概问的是如果臂长不一样为什么会平衡吧。
那么就看看以前买菜时用的秤或者是中药铺的戥子吧,一边长一边短。
不同重量的东西,只要把秤砣(就一个,重量不变)放得离支点或远些或近些就能平衡了,远近的程度恰好就对应了东西的重量。东西越重,秤砣就放得更远。
这就是杠杆的原理啦

如果要问为什么,阿基米德也说不清楚,这是实验中总结出来的大家公认的东西。就像平面几何中三角形内角和为180度一样。不用解释。

抛砖引玉啦
要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1
L1=F2
L2。
偏大!
因为秤砣要向秤杆后面移动更多的距离
才能与物体平衡!
而秤杆数字越往后越大,读出的数据就偏大!
比如说:我们称大象,用1吨能表示了。但是要用1千克,则为1000千克。
秤砣磨损就相当于计量单位变小。单位变小,则单位前面的数值就要变大了!

分别用一根长的棍子和短的棍子,手拿一端,用相同的力度,哪根棍子打人更痛?请用物理学具体分析,谢谢。

打人疼不疼关键是看棍子作用在人身上的力度,本质就是能量的专递。同样力度,长的棍子角速度小于短的,设定棍子接触人体的部分相同,棍子速度越快,传递能量越大。所以短的打人疼。
当棍子打我们的那一刹那 用我们给棍子的反作用力抵消了他的作用力 那时是个平衡问题 所以做y轴的投影 列平衡方程 就得出作用在物体上的力就是所用的力 所以无论棍子长短 受力都是一样的 而p=F除以s 当受力面越小 感觉越疼 当棍子是软的时就是我们常说的抽 那样受力比较复杂 由于受力面积小和复杂力的情况 使它变得更加疼痛
手痛不痛看压强……
同样力度,肯定是细的棍子打的更痛!理论上讲跟长度没关系,但是实际情况下,似乎太短的棍子使不上力的……
短的棍子打人更痛。
原因有二:
1、根据杠杆原理F1*L1=F2*L2,L1<L2,F1>F2。L2越长,在前端的打击力F2就越小。
F1、F1:::棍子末端的打击力度;
L1、L2 :棍子的长度。
2、棍子越长,所受到的空气阻力也就越大,在前端的打击力也变小。
长的吧,力矩长呀。

给我一个支点,我就能撬起整个地球是谁说的?

有人说是阿基米德说的,还有人说是亚里士多德说的,甚至有人说是尼采说的。我已经被搞晕了,哪位能帮帮我?

这是古希腊物理学家阿基米德说的,讲述的是杠杆原理。

阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。 阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。

阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。

阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。

但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。

扩展资料:

杠杆原理

杠杆原理:满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。杠杆原理亦称“杠杆平衡条件”:要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用公式可表达为:

(F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂)

海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说:“你连地球都举得起来,把一艘船放进海里应该没问题吧?阿基米德叫工匠在船的前后左右安装了一套设计精巧的滑车和杠杆。

阿基米德叫100多人在大船前面,抓住一根绳子,他让国王牵动一根绳,大船居然慢慢地滑到海中。国王异常高兴,当众宣布:“从现在起,我要求大家,无论阿基米德说什么,都要相信他!”

参考资料:百度百科---阿基米德

阿基米德说的。

阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

阿基米德对数学和物理的发展做出了巨大的贡献,为社会进步和人类发展做出了不可磨灭的影响,即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感,他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。

扩展资料:

阿基米德成就:

(1)阿基米德发展了天文学测量用的十字测角器,并制成了一架测算太阳对向地球角度的仪器。

(2)阿基米德研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是因为纪念他而命名。另外他在《数沙者》一书中,他创造了一套记大数的方法,简化了记数的方式。

(3)阿基米德还曾经运用水力制作一座天象仪,球面上有日、月、星辰、五大行星。根据记载,这个天象仪不但运行精确,连何时会发生月蚀、日蚀都能加以预测。

(4)浮力原理简述:物体在液体中所获得的浮力,等于它所排出液体的重量,即:F=G(式中F为物体所受浮力,G为物体排开液体所受重力)。该式变形可得

参考资料:百度百科-阿基米德

古希腊著名的科学家阿基米德发现杠杆的平衡原理后,怀着一颗激动的心情写了一封信,把他这一重要发现报告给叙拉古国王希伦。他在信是说:“如果给我一个支点,一根足够长的硬棒,我就能撬动整个地球”。我们知道,根据杠杆原理,只要杠杆的动力臂足够长,用一定大小的力就可以举起任意重的物体。但是,阿基米德真能撬起地球吗?
首先我们来计算杠杆的长度。在地球上称量质量与地球相等的物体,该物体受到的重力约为6×10(22)N假如一个人能直接举起600N的重物,那么根据杠杆的平衡条件即他要举起地球,就得把他的手放在这样的一根长的杠杆上-杠杆的动力臂应当等于它的阻力臂的1×10(20)倍。茫茫宇宙之中,哪有这么长的杠杆?
只有杠杆还不行,在太阳的周围,所的的星球都在围绕太阳转动,而且转动的周期也来一样,同时太阳系在宇宙中也在运动,所以根本不存在相对于地球静止的另外一个星球作为杠杆的支点。
假如世界上真的存在这样长杠杆,并联找到了合适的支点,阿基米德就能举起地球吗?
假如阿基米德真能将地球举起1mm,他的手握杠杆的一端在宇宙空间里就需移动一个大圆弧,这个弧的长度大约是1×10(17)km。也就是说,阿基米德如果要把地球举起1mm,他扶着杠杆的手就得移动让人不可想象的大距离!
我们再来计算他用多少时间才能将地球举起1mm。如果阿基米德举起的速度是1m/s,那么根据t=s/v=1×10(20m)/(1m/s)=1×10(20)S大约为三万万万年!可见阿基米德即使是用一辈子的时间接着杠杆,也不能把地球举起像极细头发丝那样细的一段距离。
这句话是阿基米德说的,他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。"

有一个人在无重力的情况下拿着一个无限长的棒子的一端绕自己转,那么棒子的另一端会不会超过光速

我在杂志上看见的,何解?
会的。
由于是无限长,根据三角函数可知,在手动一点的时候棍子已经跑了无限长了。
而不受重力影响,不用考虑拿不起来。
由于已经超了光速,棍子会看不见。
所以只是假设,根本不会出现这情况。
由于棍子超了光速,根据“相对论”可知, 棍子的质量会不断变小,在停下来的那一刻会发生大爆炸,能量无比。

(当然,自己见解。仅供阅读,不供参考。)
在你假设成立下,加上棍子很轻,刚体不会形变,长度很长的情况下,外端运动速度也不会超过光速。
根据狭义相对论,棒子外端理论速度会超过光速,但是广义相对论下此状态下的时间,空间会发生极度扭曲,因此在空间时间都不存在的情况下,你的速度(m/s)也就没任何理论意义了。
而实际中,根据相对论性质量理论,你的这个棒质量即使再轻,当他速度很大时自身质量也会急剧增加,加速所需能量也是无穷大,因此你没有足够能量让他加速到光速。
棒子无限长,意味着质量无限大,根据加速度公式,加速时需要的力也要无限大,如果那个人不是超人,是挥不动的。
阿基米德说:给我一个支点和一个足够长的杆,我能搬动地球!!!!!
伟人啊!
假设我们给他这个支点和这个杆子,他把地球敲动一个厘米。他使用的力量假设为体重60千克算了!地球有6x10的23次方。
那么,杠杆的动力臂是阻力的10的23次方倍。阻力臂被抬高1厘米,动力臂那边将划过10的23次米的大弧,在假定他不休息,1秒移动1米,这个任务需要30亿万年……
不会。因为根据爱因斯坦的广义相对论,,任何物体的运动速度均不可能超过光速。
不会,棒子不是刚体,会变弯
本文标题: 拿一根足够长的杆,用手拿住它的一端,迅速挥舞它,不考虑阻力等其他因素,杆的另一端能否达到光速
本文地址: http://www.lzmy123.com/jingdianwenzhang/210541.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    干性肌肤在生活中有哪些保养皮肤的方法十进制为何被称为中国古代对数学的伟大贡献
    Top