什么是量子力学谁知道啊量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的...

既然光有波粒二象性,电子又是概率云状态存在,那么卢瑟福实验的射线打进原子里时射线和电子会发生干扰吗

什么是量子力学

谁知道啊
量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。
量子力学的发展简史

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。

1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。

1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。

在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。

由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。

量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。

当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。

量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。

1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。

量子力学的基本内容

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。

在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其波函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。

波函数的平方代表作为其变数的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。

关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。

但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。

但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。

据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。

20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。

量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。

人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。

量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离性的观点.

比一楼的有用把
量子力学

“量子”一词意指“一个量”或“一个离散的量”。在日常生活范围里,我们已经习惯于这样的概念,即:一个物体的性质,如它的大小、重量、颜色、温度、表面积以及运动,全都可以从一物体到另一物体以连续的方式变化着。例如,在各种形状、大小与颜色的苹果之间并无显著的等级。

然而,在原子范围内,事情是极不相同的。原子粒子的性质,如它们的运动、能量和自旋,并不总是显示出类似的连续变化,而是可以相差一些离散的量。经典牛顿力学的一个假设是:物质的性质是可以连续变化的。当物理学家们发现这个观念在原子范围内失效时,他们不得不设计一种全新的力学体系——量子力学,以说明标志物质的原子特征的团粒性。

量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

量子力学
维基百科,自由的百科全书
量子力学理论和相对论理论是现代物理学的两大基本支柱,经典力学奠定了现代物理学的基础,但对於高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。

量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特徵,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。

量子力学和资讯科学的结合产生了一门新的学科——量子资讯科学。
量子力学
维基百科,自由的百科全书
跳转到: 导航, 搜索
量子力学理论和相对论理论是现代物理学的两大基本支柱,经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。

量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。

量子力学和信息学的结合产生了一门新的学科——量子信息。

目录 [隐藏]
1 量子力学理论体系
1.1 量子力学基本假设
1.1.1 波函数假设
1.1.2 量子力学算子假设
1.1.3 本征函数集完备性假设
1.1.4 测量平均值假设
1.1.5 电子自旋假设
1.2 复杂体系态函数和能量本征值的近似算法
2 重要主题
3 外部链接

[编辑]
量子力学理论体系
[编辑]
量子力学基本假设
[编辑]
波函数假设
在量子力学中,体系的状态用坐标和时间的函数 ψ 来描述。这个函数叫做状态函数或者叫波函数,它包涵和关于体系的可确定的全部知识。

[编辑]
量子力学算子假设
对于每一个物理量都有一个对应的量子力学算子。对应于物理量 F 的量子力学算子可以这样得到:写出物理量 F 作为笛卡儿坐标和对应动量的函数的经典表达式,然后做如下代换:

q = q (q为笛卡儿坐标,包括 xyz。)

[编辑]
本征函数集完备性假设
代表任意物理量的线性厄米算子的本征函数集构成一个完备集。

[编辑]
测量平均值假设
一个态为的体系的物理量 A 的测量平均值是, 其中 是物理量 A 对应的量子力学算子。

[编辑]
电子自旋假设
电子具有自旋角动量,他的三个分量对应于量子力学的三个线性厄米算符 、 和 ,他们遵循角动量的对易关系:

[编辑]
复杂体系态函数和能量本征值的近似算法
[编辑]
重要主题
波粒二象性和不确定关系
波函数和薛定谔方程
量子态和态向量
算符和本征态、本征值
量子力学中的微扰
量子散射
全同粒子
角动量理论
密度矩阵和量子统计
量子测量
量子缠结
量子脱散
二次量子化
量子多体问题
相对论性量子力学
量子场论
路径积分
决定论
因果律
自由意志
[编辑]
外部链接
大话量子力学史
量子化学网
物理学分支

基础理论
经典力学 | 连续介质力学 | 热力学 | 统计力学 | 电动力学 | 相对论 | 量子力学
研究领域
力学 | 声学 | 热学 | 电磁学 | 光学
凝聚态物理学 | 固体物理学 | 等离子体物理学 | 分子物理学 | 原子物理学 | 原子核物理学 | 粒子物理学
交叉和应用学科
天体物理学 | 生物物理学 | 物理化学 | 材料科学 | 电子科学 | 非线性物理学 | 计算物理学

取自"http://wikipedia.cnblog.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6"
Category: 量子力学
回答者:rzpfang
量子力学上个世纪初开始兴起的一门学科,它与经典力学相对应。我们都知道,经典力学是建立在牛顿运动定律基础之上的,它主张决定论,即物体的运动轨迹或任何一时刻所处的状态由物体的受力情况及初始状态唯一确定。而量子力学建立的基础是五大基本假定,其中包括薛定谔方程、波函数、算符、状态叠加原理、全同性原理。
简言之,用量子力学的语言描述我们的世界,那么我们的世界是未定的,例如电子不单单是一个实物粒子,它既是粒子,也是波,它在某个时刻处于什么状态是以一定的概率分布的,既有可能在那,也有可能在这,通常处于各种可能状态的叠加态。
量子力学博大精深,很多东西三言两语很难说清楚,希望上面我说的能给你点信息,如有兴趣,我们可以继续探讨。QQ:28017031
  量子力学(Quantum Mechanics),它是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

  量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
  量子力学是非常小的领域——亚原子粒子中的主要物理学理论 。该理论形成于20世纪早期,彻底改变了科学家对物质组成成分的观点。在量子世界,粒子并非是台球,而是嗡嗡跳跃的概率云,它们并不只存在一个位置,也不会从点A通过一条单一路径到达点B 。根据量子理论,粒子的行为常常像波,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非实际的特性 。物理学中有些怪异的想法,诸如纠缠和不确定性原理,就源于量子力学。

电子的实验理论

根据普朗克关系式,光子的频率与能量成正比。当一个束缚电子跃迁于原子的不同能级的轨域之间时,束缚电子会吸收或发射具有特定频率的光子。例如,当照射宽带光谱的光源于原子时,很明显特别的吸收光谱会出现于透射辐射的光谱。每一种元素或分子会显示出一组特别的吸收光谱,像氢光谱。光谱学专门研究测量这些谱线的强度和宽度。细心分析这些数据,即可得知物质的组成元素和物理性质。
在实验室操控条件下,电子与其它粒子的相互作用,可以用粒子探测器。来仔细观察。电子的特征性质,像质量、自旋和电荷等等,都可以加以测量检验。四极离子阱和潘宁阱。可以长时间地将带电粒子限制于一个很小的区域。这样,科学家可以准确地测量带电粒子的性质。例如,在一次实验中,一个电子被限制于潘宁阱的时间长达10个月之久。
1980年,电子磁矩的实验值已经准确到11个位数。在那时候,是所有测得的物理常数中,最准确的一个。于2008年2月,隆德大学的一组物理团队首先拍摄到电子能量分布的视讯影像。科学家使用非常短暂的闪光,称为阿托秒。脉冲,率先捕捉到电子的实际运动状况。
在固态物质内,电子的分布可以用角分辨光电子谱来显像。应用光电效应理论,这科技照射高能量辐射于样品,然后测量光电发射的电子动能分布和方向分布等等数据。仔细地分析这些数据,即可推论固态物质的电子结构。 美国物理学家罗伯特·密立根于1909年做了一个著名实验,准确地测量出电子的带电量。这实验称为油滴实验。在这实验里,他使用电场的库仑力来平衡带电油滴所感受到的引力。从电场强度,他计算出油滴的带电量。他的仪器可以测量出含有1~150个离子的油滴的带电量,误差小于0.3%。他发现每一颗油滴的带电量都是同一常数的倍数,因此,他推论这常数必是电子的带电量。
汤姆逊和学生约翰·汤森德John Townsend。使用电解的离子气体来将过饱和水蒸气凝结,经过测量带电水珠粒的带电量,他也得到了相似结果。于1911年,亚伯兰·约费Abram Ioffe。使用带电金属微粒子,独立地得到同样的结果.他发表这结果于1911年。但是,油滴比水滴更稳定,油滴的蒸发率较低,比较适合更持久的精准实验。
二十世纪初,实验者发现,快速移动的带电粒子会在经过的路径,使过冷却、过饱和的水蒸气凝结成小雾珠。于1911年,应用这理论,查尔斯·威耳逊设计出云室仪器。实验者可以用照相机拍摄快速移动电子的轨道。这是早期研究基本粒子的重要仪器。 在不同的时代,人们对电子在原子中的存在方式有过各种不同的推测。
最早的原子模型是汤姆孙的梅子布丁模型。发表于1904年,汤姆逊认为电子在原子中均匀排列,就像带正电布丁中的带负电梅子一样。1909年,著名的卢瑟福散射实验彻底地推翻了这模型。
卢瑟福根据他的实验结果,于1911年,设计出卢瑟福模型。在这模型里,原子的绝大部分质量都集中在小小的原子核中,原子的绝大部分都是真空。而电子则像行星围绕太阳运转一样围绕着原子核运转。这一模型对后世产生了巨大影响,直到现在,许多高科技组织和单位仍然使用电子围绕着原子核的原子图像来代表自己。
在经典力学的框架之下,行星轨道模型有一个严重的问题不能解释:呈加速度运动的电子会产生电磁波,而产生电磁波就要消耗能量;最终,耗尽能量的电子将会一头撞上原子核(就像能量耗尽的人造卫星最终会进入地球大气层)。于1913年,尼尔斯·玻尔提出了玻尔模型。在这模型中,电子运动于原子核外某一特定的轨域。距离原子核越远的轨域能量越高。电子跃迁到距离原子核更近的轨域时,会以光子的形式释放出能量。相反的,从低能级轨域到高能级轨域则会吸收能量。藉著这些量子化轨域,玻尔正确地计算出氢原子光谱。但是,使用玻尔模型,并不能够解释谱线的相对强度,也无法计算出更复杂原子的光谱。这些难题,尚待后来量子力学的解释。
1916年,美国物理化学家吉尔伯特·路易士成功地解释了原子与原子之间的相互作用。他建议两个原子之间一对共用的电子形成了共价键。于1923年,沃尔特·海特勒Walter Heitler和弗里茨·伦敦Fritz London应用量子力学的理论,完整地解释清楚电子对产生和化学键形成的原因。于1919年,欧文·朗缪尔将路易士的立方原子模型cubical atom。加以发挥,建议所有电子都分布于一层层同心的(接近同心的)、等厚度的球形壳。他又将这些球形壳分为几个部分,每一个部分都含有一对电子。使用这模型,他能够解释周期表内每一个元素的周期性化学性质。
于1924年,奥地利物理学家沃尔夫冈·泡利用一组参数来解释原子的壳层结构。这一组的四个参数,决定了电子的量子态。每一个量子态只能容许一个电子占有。(这禁止多于一个电子占有同样的量子态的规则,称为泡利不相容原理)。这一组参数的前三个参数分别为主量子数、角量子数和磁量子数。第四个参数可以有两个不同的数值。于1925年,荷兰物理学家撒姆耳·高斯密特Samuel Abraham Goudsmit和乔治·乌伦贝克George Uhlenbeck提出了第四个参数所代表的物理机制。他们认为电子,除了运动轨域的角动量以外,可能会拥有内在的角动量,称为自旋,可以用来解释先前在实验里,用高分辨率光谱仪观测到的神秘的谱线分裂。这现象称为精细结构分裂。 于1924年,法国物理学家路易·德布罗意在他的博士论文《Recherches sur la théorie des quanta》(《Research on Quantum Theory》)里,提出了德布罗意假说,假设所有物质都拥有像光子一样的波粒二象性;也就是说,在适当的条件下,电子和其它物质会显示出粒子或波动的性质。假若,物理实验能够显示出,随着时间演化,粒子运动于空间轨道的局域位置,则这实验明确地显示了粒子性质。像光波一类的波动,通过双缝实验的双缝后,会产生干涉图案于探测屏障。这现象毫无疑问地分辨出波动性质。于1927年,英国物理学家乔治·汤姆孙用金属薄膜,美国物理学家克林顿·戴维孙和雷斯特·革末用镍晶体,分别发现了电子的干涉效应。
德布罗意的博士论文给予埃尔温·薛定谔很大的启示:既然粒子具有波动性,那必定有一个波动方程,能够完全地描述这粒子的物理行为。于1926年,薛定谔想出了薛定谔方程。这方程能够描述电子波的传播机制。它并不能命定性地给出电子的明确运动轨道,电子在任意时间的位置。但是,它可以计算出电子处于某位置的几率,也就是说,在某位置找到电子的几率。薛定谔用自己想出的方程来计算氢原子的谱线,得到了与用玻尔模型的预测相同的答案(更详细资料,请参阅氢原子)。薛定谔方程的波动概念,为量子力学创立了一个新的发展平台。再进一步将电子的自旋和几个电子的互相作用纳入考量,薛定谔方程也能够给出电子在其它原子序较高的原子内的电子组态。
于1928年,保罗·狄拉克研究出狄拉克方程。这公式能够描述相对论性电子的物理行为。相对论性电子是移动的速度接近光速的电子。为了要解释狄拉克方程的自由电子解所遇到的反常的负能量态问题,狄拉克提出了一个真空模形,称为狄拉克之海:即真空是挤满了具有负能量的粒子的无限海。因此,他预言宇宙中存在有正子(电子的反物质搭配)。于1932年,卡尔·安德森在宇宙射线实验中首先证实了正子的存在。
于1947年,威利斯·兰姆在与研究生罗伯特·雷瑟福Robert Retherford合作的实验中,发现氢原子的某些应该不会有能量差值的简并态,竟然出现很小的能量差值。这现象称为兰姆位移。大约同年代,波利卡普·库施助手模板和亨利·福立Henry Foley。在共同完成的一个实验中,发现电子的异常磁矩,即电子的磁矩比狄拉克理论的预估稍微大一点。为了解释这些现象,朝永振一郎、朱利安·施温格和理察·费曼,于1940年代,创建了量子电动力学。 二十世纪的前半世纪,粒子加速器运作所需的理论与设备都已发展成熟。物理学家可以开始更进一步的研究亚原子粒子的性质。1942年,唐纳德·克斯特Donald Kerst。首先成功地使用电磁感应将电子加速至高能量。在他领导下,贝他加速器最初的能量达到2.3MeV;后来,能量更达到300MeV。1947年,在通用电器实验室,使用一台70MeV电子同步加速器,物理学家发现了同步辐射,移动于磁场的相对论性电子因为加速度而发射的辐射。
1968年,第一座粒子束能量高达1.5GeV的粒子对撞机,名为大储存环对撞机ADONE。在意大利的核子物理国家研究院。开始运作。这座对撞机能够将电子和正子反方向地分别加速。与用电子碰撞一个静止标靶相比较,这方法能够有效地使对撞能量增加一倍。从1989年运做到2000年,位于瑞士日内瓦近郊,欧洲核子研究组织的大型电子正子对撞器,能够实现高达209GeV的对撞能量。这对撞器曾经完成多项实验,对于考练与核对粒子物理学的标准模型的正确性有莫大的贡献。 电子的质量出现在亚原子领域的许多基本法则里,但是由于粒子的质量极小,直接测量非常困难。一个物理学家小组克服了这些挑战,得出了迄今为止最精确的电子质量测量结果。
将一个电子束缚在中空的碳原子核中,并将该合成原子放入了名为彭宁离子阱的均匀电磁场中。在彭宁离子阱中,该原子开始出现稳定频率的振荡。该研究小组利用微波射击这个被捕获的原子,导致电子自旋上下翻转。通过将原子旋转运动的频率与自旋翻转的微波的频率进行对比,研究人员使用量子电动力学方程得到了电子的质量。

核外电子的运动状态和空间运动状态是什么?

核外电子的运动状态和空间运动状态是核外电子空间运动状态指原子核外有几个电子就有几个运动状态。空间运动状态不包含电子的自旋状态,也就是说电子的空间运动状态指的是原子轨道有几个。空间运动状态这个概念是在介绍电子知识方面进行引出的,属于高级的物理学知识。

运动状态的介绍

运动状态,是指物体进行机械运动时相对某个参考系的状态。运动状态有静止,匀速运动,加速运动,减速运动,也有直线运动,曲线运动等多种状态。在物理上,当物体的从快到慢,从慢到快或从静止到运动时物体的速度发生变化。

当物体向左转,向上转物体的运动方向发生变化时,我们就说物体的运动状态发生改变。运动状态与力之间的关系,力是改变物体运动状态的原因,力不是维持物体运动的原因。力可以改变物体的运动状态。

比如说,用力推箱子,推力使箱子发生位移,那么推力使箱子的运动状态发生改变。汽车刹车减速,摩擦力使汽车降低运动速度,那么摩擦力改变了汽车的运动状态注意,力只是可以改变物体的运动状态,并不是只要物体受力作用其运动状态就一定会改变。

核外电子的运动状态可以用两个概念来描述:轨道运动状态和自旋运动状态。
1. 轨道运动状态:核外电子在原子核周围以离散的能级分布的轨道上运动。这些轨道被称为电子壳层或电子轨道。这种运动状态可以通过量子力学描述,其中电子的位置和运动轨迹的概率分布可以由波函数来表示。
2. 自旋运动状态:电子也具有自旋,它类似于物理学中旋转的自旋。自旋被认为是电子围绕其轴心自旋的一种量子特性。自旋运动状态可以是自旋向上(表示为)或自旋向下(表示为)。
综合起来,核外电子的空间运动状态是其位于特定电子轨道上的位置概率分布,而自旋运动状态是其自旋的定向,即自旋向上或自旋向下。这两个状态共同描述了电子在原子中的运动特性。
核外电子的运动状态指的是电子在原子核周围的轨道上运动的状态。根据量子力学的描述,电子的运动状态可以用波函数来描述,波函数包含了电子的位置和动量等信息。
而空间运动状态则是指电子在空间中的运动方式。根据量子力学的原理,电子在原子中的运动是以波粒二象性存在的,既可以表现为粒子的点状运动,也可以表现为波的传播。在原子的轨道上,电子的空间运动状态可以用波函数的分布来描述,即电子的位置在空间中的概率分布。这种概率分布可以通过波函数的平方模来表示,即波函数的绝对值的平方。
1. 核外电子的运动状态和空间运动状态:
核外电子的运动状态指的是电子在原子核周围的轨道上运动的状态。根据量子力学的理论,电子不会以连续的轨道运动,而是存在于一系列离散的能级中。这些能级被称为电子壳层或电子能级。
空间运动状态指的是描述电子的位置和速度的物理量。根据量子力学的原理,我们不能同时精确地知道电子的位置和速度,我们只能通过一组概率分布函数来描述电子的可能位置。这些概率分布函数被称为波函数。
2. 知识点运用:
核外电子的运动状态和空间运动状态对于理解原子结构和化学性质至关重要。它们帮助我们解释元素周期表的排列规律、化学键的形成、光谱现象等。
通过研究核外电子的运动状态和空间运动状态,我们可以预测原子的化学反应性质,如电离能、亲电子性、还原性等。此外,了解电子的空间运动状态有助于我们理解分子轨道理论和化学键的性质,从而更好地解释分子的电子结构和反应机理。
3. 知识点例题讲解:
例题:电子在能级n=2的原子轨道上运动,求该轨道内电子的概率分布。
解析:根据量子力学的原理,我们可以使用波函数来描述电子的空间运动状态。对于能级n=2的原子轨道,根据氢原子的波函数表达式,可以得到电子的概率分布函数为Ψ² = (1/16πa₀³) * exp(-r/a₀) * |Y(θ, φ)|²,其中a₀是玻尔半径,r是距离原子核的距离,Y(θ, φ)是球谐函数。
通过计算波函数的平方,我们可以得到不同位置的电子概率密度。然后,我们可以绘制轨道形状,显示电子在该轨道内的概率密度最高的区域。
这个例题展示了如何利用波函数来描述核外电子的空间运动状态,并通过计算概率密度来描绘电子的空间分布情况。
核外电子的运动状态和空间运动状态是原子物理学中的重要概念。在原子中,电子绕着原子核旋转,同时在原子的外部空间中运动。
1. 核外电子的运动状态:
核外电子的运动状态主要有两种:定态和激发态。
a. 定态:当电子处于原子的基态(或称最低能级)时,它具有确定的能量水平和特定的轨道角动量。在这种情况下,电子不会发生辐射或吸收能量的过程。
b. 激发态:当电子从原子的基态跃迁至更高能级时,它进入激发态。在激发态下,电子具有更高的能量水平和不同的轨道角动量。当电子从激发态返回到基态时,会发生辐射现象,如光子发射。
2. 空间运动状态:
核外电子的空间运动状态主要体现在其在原子外部的量子力学波函数中。根据泡利不相容原理,每个电子都有一个确定的自旋量子数(S=1/2±1/2),因此它们在空间中的运动状态可以表示为四个分量(x、y、z)。这些分量共同构成了电子的波函数,描述了电子在空间中的分布情况。
总结一下,核外电子的运动状态包括定态和激发态,分别对应于特定能量水平和轨道角动量;而空间运动状态则体现在电子波函数中,描述了电子在空间中的分布情况。

所有的物体都会发光吗?有人说“人也会发光”,是真的吗? 

在日常生活中,我们常常会看到很多高温的物质会发光,比如:火焰。那这是不是就意味着物体到达一定温度后都会发光?事实其实并非如此,宇宙中的万物都能会发光,只是我们看不到罢了。关于这个问题,其实我们要先搞清楚什么是光?

光的本质

早在1666年,牛顿就最先利用三菱镜进行分光实验,观察到了光的色散。把一束白光分解成了彩色光谱。

后来,牛顿完成了一部巨著《光学》。这部《光学》也成为了光学领域的奠基之作。牛顿提出了一个观念:光是一种粒子。

几乎在同一时期,学术界还有一位大神提出了完全不同的看法,他就是惠更斯,他认为光是一种波。在那个时期,牛顿是学术圈毋庸置疑的霸主。因此,光的粒子说占据了主导。

后来,经过一群电磁学领域的科学家的努力,尤其是麦克斯韦,光的波动说占据了主导。麦克斯韦提出麦克斯韦方程,统一了电和磁,还预言了电磁波的存在。同时,他还提出光就是电磁波。

牛顿的分光实验中,看到的彩色光谱就是可见光光谱,是电磁波光谱的一部分。也就是说,其实还存在着许多我们看不到的“光(电磁波)”,肉眼能看到的光只是整个电磁波光谱中的一小部分。这件事告诉我们一个道理:眼见并不一定为实。

现在的天文观测设备就不仅仅局限在可见光波段,还会涉及很多其他的波段。比如:

哈勃空间望远镜主要就是覆盖:可见光和近紫外波段;斯皮策空间望远镜主要就是覆盖:红外波段;钱德拉X射线天文台主要就是覆盖:软X射线波段;康普顿伽玛射线天文台主要就是覆盖:伽玛射线波段和硬X射线波段。

随着20世纪量子力学的发展,对于“光的本质”的探究也进入到了全新的阶段。如今我们知道,光具有波粒二象性。也就是说,光具有粒子性,也具有波动性,牛顿的粒子说是对的,麦克斯韦的波动说也是对的。

光的由来

了解了上文内容,我们就很容易发现一个问题,可能有些物体也在发光,只是因为发出的不是在可见光波段内,所以我们看不到。我们举几个例子。

我们每个人时时刻刻都在发光,只不过人体发出的光在红外波段,因此,肉眼是看不到的。

除此之外,许多天体发出的光也不在可见光波段。甚至很多天体发的光要比我们看到的不一样一些。就拿太阳来说,我们平时看到太阳是黄色的。

但实际上,太阳的光谱峰值位于蓝绿色之间。因为我们肉眼的误差,我们看不到太阳发出的绿色,因此,实际上太阳应该是绿色的。不过,据说在这世界上有极其少的人因为基因突变,可以看到绿色的太阳。

所以,这再一次印证了“眼见并不一定为实”。那光到底是如何产生的呢?

科学家发现,凡是高于绝对零度的物体,都会向外辐射光(电磁波)。这也是为什么人体也会发光的原因。那具体是如何发光的呢?

我们都知道,万物都是由原子构成的。原子内有电子和原子核。电子在原子核外围呈现概率云分布。

当电子从高能量状态转变到低能量状态时,这时候电子就会损失能量,这部分能量就会以光的形式释放出来。因此,想要物体不发光,除非电子都要处于最低能量状态,这其实就需要物体处于绝对零度状态。可是按照热力学第三定律,物质是没有可能达到绝对零度的。

也就是说,无论物体处于什么情况,都会向外辐射光,而不是当物体温度很高时才会辐射光。

除了电子能级变化会产生光,其实原子核如果发生了衰变,裂变或者核聚变,也会向外辐射光子。氢弹就是利用核聚变反应向外辐射大量的能量。

总结

光具有波粒二象性,既是粒子,又是电磁波。肉眼可以看到的光属于可见光,是电磁波的一部分。凡是高于绝对零度的物体都会发出光,只是大多数光不在可见光波段,所以我们看不到。根据热力学第三定律,物质不可能达到绝对零度,因此,宇宙中的万物都会辐射光。光主要来源于两种形式:电子从高能量状态转化成低能量状态会辐射光,其次原子核的衰变,核聚变,核裂变也会产生光。

所有的物体都会发光。但是,很多都是我们肉眼看不见的光,肉眼可以看到的光是可见光。所以宇宙中的万物都是会发光的。
是的。因为所有有温度的物体都会发出红外线,而红外线也是光的一种,只是人眼看不到。
并不是所有物体都会发光,只有具备发光的物质才能够发光,比如说萤火虫。人肯定是不会发光的。

伽马射线是什么粒子

1. 伽马射线是什么
伽马射线是什么 什么是α射线,β射线和γ射线
【α射线】

α射线亦称α粒子束,高速运动的氦原子核。α粒子由2个质子和2个中子组成。它的静止质量为6.64*10-27千克,带电量为3.20*10-19库。 物理学中用He表示α粒子或氦核。卢瑟福首先发现天然放射性是几种不同的射线。他把带正电的射线命名为α射线;带负电的射线命名为β射线。在以后的一系列实验中卢瑟福等人证实α粒子即是氦原子核。

【β射线】

β射线:高速运动的电子流0/-1e,贯穿能力很强,电离作用弱,本来物理世界里没有左右之分的,但β射线却有左右之分。贝塔粒子即β粒子,是指当放射性物质发生β衰变,所释出的高能量电子,其速度可达至光速的99%。 在β衰变过程当中,放射性原子核通过发射电子和中微子转变为另一种核,产物中的电子就被称为β粒子。在正β衰变中,原子核内一个质子转变为一个中子,同时释放一个正电子,在“负β衰变”中,原子核内一个中子转变为一个质子,同时释放一个电子,即β粒子。

【γ射线】

γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,是波长短于0.01埃的电磁波。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。
伽马射线的危害
γ射线具有极强的穿透本领。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶。

它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。

扩展资料:

一、产生原理

放射性原子核在发生α衰变、β衰变后产生的新核往往处于高能量级,要向低能级跃迁,辐射出γ光子。原子核衰变和核反应均可产生γ射线。其为波长短于0.2埃的电磁波。γ射线的波长比X射线要短,所以γ射线具有比X射线还要强的穿透能力。

伽马射线是频率高于1.5 千亿亿 赫兹的电磁波光子。伽马射线不具有电荷及静质量,故具有较α粒子及β粒子弱之电离能力。伽马射线具有极强之穿透能力及带有高能量。伽马射线可被高原子数之原子核阻停,例如铅或乏铀。

二、测量方法

γ光子不带电,故不能用磁偏转法测出其能量,通常利用γ光子造成的上述次级效应间接求出,例如通过测量光电子或正负电子对的能量推算出来。此外还可用γ谱仪(利用γ射线与物质相互作用)直接测量γ光子的能量。

由荧光晶体、光电倍增管和电子仪器组成的闪烁计数器是探测γ射线强度的常用仪器。

参考资料来源:搜狗百科-伽马射线
什么是伽马射线
α射线是氦原子核流, β放射是电子流 γ射线,波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射.李启斌提出了本世纪7个天文研究领域。

其中有3个涉及地外能量探索,一个是和暗物质有关的暗能量,一个是具有巨大辐射能量的类星体,还有一个则是来自河外的巨大能量源枣伽玛射线爆。 人类已经看到的太空物质只有百分之几,还有百分之九十几的物质是黑暗的,人类没有看到的,这就是暗物质。

提到暗物质,人类很容易想到“黑洞”。黑洞是暗物质的一种。

黑洞的引力非常大,从地球上发射的卫星要达到第一宇宙速度7.8公里/秒才能冲出大气层,而在黑洞上以光速发射还是无法超越其巨大的引力。根据霍金的黑洞理论,根据对周围事物的观测可以确定黑洞。

如果其周围事物往下掉,那么就会发出X光,产生X光晕,根据对X光的观测就可以测定黑洞。如果观测到某颗星一直围绕着空心转动,那么也可以推测其轨道中间存在着黑洞。

对类星体的探讨属于天体剧烈活动领域的观测。李启斌解释说,类星体的神秘点在于其每秒辐射的能量比整个银河系1000亿颗星体的总和还大。

天文学家推测,其中一定存在着提供能量的独特方法。 伽玛射线爆的发现是戏剧性的。

人们最初观测伽马射线是为了监测核试验,当仪器偶然对准空中时,发现了来自太空的伽马射线。人们由此发现了发射伽马射线的星体,其中有一部分是爆发性的。

空间探测器的观测结果显示了伽马射线爆平均每天一次的频繁程度。 伽马射线爆跟类星体一样具有很强的能量。

李启斌乐观的讲,如果能够观测和分析出它们的能量来源,说不定可以解决人类的能源危机和以破坏环境为代价的能源开采。2003年末,美国《科学》杂志评出年度十大科技成就,关于宇宙伽马射线的研究入选其中。

这项研究增进了对宇宙伽马射线爆发的理解,证实伽马射线爆发与超新星之间存在联系。 6500万年前,一颗撞向地球的小行星曾导致了恐龙的灭绝。

然而据英国《新科学家》杂志2003年披露,来自外太空的杀手远不止小行星一个,最新科学研究显示,早在4亿年前,地球上曾经历过另外一次生物大灭绝,而罪魁祸首就是银河系恒星坍塌后爆发的“伽马射线”! 在天文学界,伽马射线爆发被称作“伽马射线暴”。 究竟什么是伽马射线暴?它来自何方?它为何会产生如此巨大的能量? “伽马射线暴是宇宙中一种伽马射线突然增强的一种现象。”

中国科学院国家天文台赵永恒研究员告诉记者,伽马射线是波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射,它的能量非常高。但是大多数伽马射线会被地球的大气层阻挡,观测必须在地球之外进行。

冷战时期,美国发射了一系列的军事卫星来监测全球的核爆炸试验,在这些卫星上安装有伽马射线探测器,用于监视核爆炸所产生的大量的高能射线。 侦察卫星在1967年发现了来自浩瀚宇宙空间的伽马射线在短时间内突然增强的现象,人们称之为“伽马射线暴”。

由于军事保密等因素,这个发现直到1973年才公布出来。这是一种让天文学家感到困惑的现象:一些伽马射线源会突然出现几秒钟,然后消失。

这种爆发释放能量的功率非常高。一次伽马射线暴的“亮度”相当于全天所有伽马射线源“亮度”的总和。

随后,不断有高能天文卫星对伽马射线暴进行监视,差不多每天都能观测到一两次的伽马射线暴。 伽马射线暴所释放的能量甚至可以和宇宙大爆炸相提并论。

据赵永恒研究员介绍,伽马射线暴的持续时间很短,长的一般为几十秒,短的只有十分之几秒。而且它的亮度变化也是复杂而且无规律的。

但伽马射线暴所放出的能量却十分巨大,在若干秒钟时间内所放射出的伽马射线的能量相当于几百个太阳在其一生(100亿年)中所放出的总能量! 在1997年12月14日发生的伽马射线暴,它距离地球远达120亿光年,所释放的能量比超新星爆发还要大几百倍,在50秒内所释放出伽马射线能量就相当于整个银河系200年的总辐射能量。这个伽马射线暴在一两秒内,其亮度与除它以外的整个宇宙一样明亮。

在它附近的几百千米范围内,再现了宇宙大爆炸后千分之一秒时的高温高密情形。 然而,1999年1月23日发生的伽马射线暴比这次更加猛烈,它所放出的能量是1997年那次的十倍,这也是人类迄今为止已知的最强大的伽马射线暴。

成因引发大辩论 关于伽马射线暴的成因,至今世界上尚无定论。有人猜测它是两个中子星或两个黑洞发生碰撞时产生的;也有人猜想是大质量恒星在死亡时生成黑洞的过程中产生的,但这个过程要比超新星爆发剧烈得多,因而,也有人把它叫做“超超新星”。

赵永恒研究员介绍说,为了探究伽马射线暴发生的成因,引发了两位天文学家的大辩论。 在20世纪七八十年代,人们普遍相信伽马射线暴是发生在银河系内的现象,推测它与中子星表面的物理过程有关。

然而,波兰裔美国天文学家帕钦斯基却独树一帜。他在上世纪80年代中期提出伽马射线暴是位于宇宙学距离上,和类星体一样遥远的天体,实际上就是说,伽马射线暴发生在银河系之外。

然而在那时,人们已经被“伽马射线暴是发生在银河系内”的理论统治多年,所以他们对帕钦斯基的观点。
伽玛射线是什么?
γ射线,又称γ粒子流,中文音译为伽马射线。波长短于0.2埃的电磁波[1]。首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。原子核衰变和核反应均可产生γ射线 。γ射线具有比X射线还要强的穿透能力。当γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对三种效应。原子核释放出的γ光子与核外电子相碰时,会把全部能量交给电子,使电子电离成为光电子,此即光电效应。由于核外电子壳层出现空位,将产生内层电子的跃迁并发射X射线标识谱。高能γ光子(>2兆电子伏特)的光电效应较弱。γ光子的能量较高时,除上述光电效应外,还可能与核外电子发生弹性碰撞,γ光子的能量和运动方向均有改变,从而产生康普顿效应。当γ光子的能量大于电子静质量的两倍时,由于受原子核的作用而转变成正负电子对,此效应随γ光子能量的增高而增强。γ光子不带电,故不能用磁偏转法测出其能量,通常利用γ光子造成的上述次级效应间接求出,例如通过测量光电子或正负电子对的能量推算出来。此外还可用γ谱仪(利用晶体对γ射线的衍射)直接测量γ光子的能量。由荧光晶体、光电倍增管和电子仪器组成的闪烁计数器是探测γ射线强度的常用仪器。

通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。

探测伽玛射线有助天文学的研究。

当人类观察太空时,看到的为“可见光”,然而电磁波谱的大部份是由不同辐射组成,当中的辐射的波长有较可见光长,亦有较短,大部份单靠肉眼并不能看到。通过探测伽玛射线能提供肉眼所看不到的太空影像。

在太空中产生的伽玛射线是由恒星核心的核聚变产生的,因为无法穿透地球大气层,因此无法到达地球的低层大气层,只能在太空中被探测到。太空中的伽玛射线是在1967年由一颗名为“维拉斯”的人造卫星首次观测到。从20世纪70年代初由不同人造卫星所探测到的伽玛射线图片,提供了关于几百颗此前并未发现到的恒星及可能的黑洞。于90年代发射的人造卫星(包括康普顿伽玛射线观测台),提供了关于超新星、年轻星团、类星体等不同的天文信息。

γ射线是一种强电磁波,它的波长比X射线还要短,一般波长γ射线具有极强的穿透本领。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡
伽马射线是什么
科学家们观察到一个伽马爆(Gamma Ray Burst, GRB)刚刚发生后的情景,见证了一个巨大星体的毁灭和一个据信是旋转黑洞的诞生.这次观测是到目前为止对伽马爆的最详细的记录,观测结果已发表在3月20日的《自然》杂志上.伽马爆是目前宇宙中已知威力最大的爆炸,一次伽马爆所释放的能量是超新星爆发的数百倍,亮度最高时达到太阳亮度的一百亿亿倍.科学家们对伽马爆的观测表明伽马爆发生非常频繁,均匀且随机地分布在宇宙中,所以科学家认为伽马爆发生在离我们相当遥远的天体.科学家们对伽马爆感兴趣的一个主要原因是想知道这些威力巨大的爆炸的起源,现在认为伽马爆可能由两个黑洞或中子星相互碰撞,或者是大质量星体在死亡时坍缩成黑洞所引起.伽马爆虽然非常频繁,可是要即时观测到一个伽马爆却非常不易,因为它发生的地点和方位都无法预测,而且持续的时间很短,一般伽马爆大规模喷发伽马射线历时只有几秒甚至短达几毫秒.这次的成功观测得益于美国航空航天局(NASA)的瞬时高能射线探索者(High-Energy Transient Explorer - HETE),设在地面的机械手望远镜(ground-based robotic telescopes)和全球的反应迅捷的研究人员.这次被命名为GRB021004的伽马爆,发生于2002年10月4日美国东部标准时间早上8点6分,HETE立刻就观测到了这一事件并在几秒钟后伽马爆还在持续时就将事件的地点和方位通知了世界各地的观测者.几分钟后,各地的观测人员相继观测到了这次伽马爆的余晖(afterglow) .在观测中,科学家们发现,这次伽马爆的余晖持续了半个多小时.这使科学家们对伽马爆的威力有了新的认识.“伽马爆一定比我们原来设想的威力还要大上许多倍,”麻省理工学院的乔治.里克尔(George Ricker)博士说,“伽马射线也许只是伽马爆能量中的冰山一角.” 科学家们认为这次观测到伽马爆是由质量比太阳大15倍的星体核心坍缩成黑洞时产生的.。
什么是伽马射线暴?
伽玛射线暴(Gamma Ray Burst, 缩写GRB),又称伽玛暴,是来自天空中某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.1-1000秒,辐射主要集中在0.1-100 MeV的能段。

伽玛暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。伽玛暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。

基本简介 伽马射线暴简称为“伽马暴”,是宇宙中伽马射线突然增强的一种现象。伽马射线是波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射,伽马射线暴的能量非常高,所释放的能量甚至可以和宇宙大爆炸相提并论,但是持续时间很短,长的一般为几十秒,短的只有十分之几秒,而且它的亮度变化也是复杂而且无规律的。

伽马射线暴(GRBs)可以分为两种截然不同的类型,长久以来,天文学家们一直怀疑它们是由两种不同的原因产生的。更常见的长伽马暴(持续2秒到几分钟不等)差不多已经被解释清楚了。

在目前的图景中,它们是在一颗高温、超大质量的沃夫—瑞叶星(Wolf-Rayet star)坍缩形成黑洞时产生的。 虽然短伽马射线暴一瞬即逝,但现在”雨燕“每年可以捕捉到10次短伽马射线暴,为我们的研究提供了非常宝贵的资料来源。

我们现在的研究认为,短伽马射线暴可能来源于一个双星体系的两颗恒星的合并以及一个黑洞的同时产生。 伽马射线暴的能源机制至今依然远未解决,这也是伽马射线暴研究的核心问题。

随着技术的进步,人类对宇宙的认识也将更加深入,很多现在看来还是个谜的问题也许未来就会被解决,探索宇宙的奥秘不但是人类追求科学进步的必要,这些谜团的解开也终将会使人类自身受益。 产生原因 天文学家的以前说法:可能是由于这种伽马射线暴距离太远,无法在视觉波长范围内观测。

最新一项研究揭示了其中的奥秘,星际尘埃吸收了几乎全部的可见光,但能量更高的伽马射线和X射线却能穿透星际尘埃,被地球上的望远镜捕捉到。 伽马射线暴伽马射线暴不过大质量恒星的死亡会产生伽马暴这一观点已经得到普遍认同。

天文学家认为,其中的大多数伽马暴是在超大质量恒星耗尽核燃料时发生的。当恒星的核心坍缩为黑洞后,物质喷流以接近光速的速度向外冲出。

喷流从坍缩星涌过,继续向宇宙空间行进,并与先前被恒星照耀的气体相互作用,产生随着时间衰减的明亮余辉。多数伽马射线将在可见光范围内呈现出明亮光线。

然而一些伽马射线暴却是黑暗状态,它们在光学望远镜中无法探测到。最新一项研究显示,黑暗伽马射线暴实际上并不是由于距离遥远而无法观测,它们无法释放光线是由于被星际尘埃吸收了大部分的可见光,这些星际尘埃团可能是恒星孕育诞生地。

曾经引发4亿年前生物大灭绝。它可能产生于雷,也参与闪电的形成旱新的研究表明,雷中释放出的伽而伽马射线可能才是闪电形成的主要原关于雷电岛*马射线可能是闪电形成的主要原因。

这个猜想.四年前佛罗里达技术协因。康普顿伽马射线天文台在上世纪会的天体物理学家约瑟夫-德怀尔就90年代早期就从地面的雷电中发现了提出了。

伽马射线。当时德怀尔从一些相关的学术报告伽马射线是波长小于0.1纳米的电中发现伽马射线和闪电有关系,为了证磁波,辐射能量比x射线还高。

伽马射明这一关系,他建立了一个高能量辐射线在短期内突然增强就会形成射线暴.模型用来描述地球大气层电场的形成。 伽马射线暴其能量释放相当于宇宙大爆炸。

伽马射结果发现,这些在电场中的伽马射线释线暴形成的原因,到底是由两个中子星放的高速电子与大气层其他微粒发生碰碰撞时产生的还是大质量恒星在死亡撞,可以产生强大的雷鸣声.同时释放时生成黑洞的过程中产生的.至今都没出电荷。在雷雨天气中.上升气流和下有定论。

但有一点是科学家们都承认的,降气流推动水分子互相作用.电场强度那就是在有巨大的宇宙能量产生时,比增大,最终释放出的电子以接近光速的如雷暴产生的过程中.会产生伽马射线.速度穿越空气。 虽然当时德怀尔的猜想神秘的闪电闪电可能是由雷暴释放的伽马射线形成的。

自然也就仅限于猜想而已.最终并没有形成定论。真正可以模拟并最邻近伽马射线形成闪电模拟的.是今年日本东京理工大学和日本物理和化学研究所联合的一次研究。

这个研究组派出一支伽马射线研究分队,到日本海的低空中观察在雷电中形成的伽马射线。 物理发现 伽马射线暴是1967年美国Vela卫星在核爆炸监测过程中由克莱贝萨德尔(Klebesadel)等人无意中发现的。

恒星的诞生和老恒星的死亡是联系在一起的。超大质量恒星迅速老化、爆炸,散发出的星际尘埃快速充斥于星云之中,超大质量爆炸产生的新物质也被喷发进星云之中,星云密度变得很大,孕育新的恒星诞生。

在充斥着星际尘埃的星系,大量的恒星生死轮回正在发生着。由于恒星形成于星际尘埃区域,可推测包裹黑暗伽马射线暴的尘埃团可能是孕育恒星的诞生之地。

伽马射线暴冷战时期,美国发射了一系列的军事卫星来监测全球的核。
γ射线是什么
(参考阅读) γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,是波长短于0.2埃的电磁波.γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制.γ射线对细胞有杀伤力,医疗上用来治疗肿瘤.2021年英国斯特拉斯克莱德大学研究发明地球上最明亮的伽马射线——比太阳亮1万亿倍.这将开启医学研究的新纪元. γ-ray波长短于0.2埃的电磁波[1].放射性原子核在发生α衰变,β衰变后产生的新核往往处于高能量级,要向低能级跃迁,辐射出γ光子.首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线.原子核衰变和核反应均可产生γ射线Y射线-内部结构模型图 Y射线-内部结构模型图 .γ射线的波长比X射线要短,所以γ射线具有比X射线还要强的穿透能力.可以透过几厘米厚的铅板.当γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对三种效应.原子核释放出的γ光子与核外电子相碰时,会把全部能量交给电子,使电子电离成为光电子,此即光电效应.由于核外电子壳层出现空位,将产生内层电子的跃迁并发射X射线标识谱.高能γ光子(>2兆电子伏特)的光电效应较弱.γ光子的能量较高时,除上述光电效应外,还可能与核外电子发生弹性碰撞,γ光子的能量和运动方向均有改变,从而产生康普顿效应.当γ光子的能量大于电子静质量的两倍时,由于受原子核的作用而转变成正负电子对,此效应随γ光子能量的增高而增强.γ光子不带电,故不能用磁偏转法测出其能量,通常利用γ光子造成的上述次级效应间接求出,例如通过测量光电子或正负电子对的能量推算出来.此外还可用γ谱仪(利用晶体对γ射线的衍射)直接测量γ光子的能量.由荧光晶体、光电倍增管和电子仪器组成的闪烁计数器是探测γ射线强度的常用仪器. 通过对γ射线谱的研究可了解核的能级结构.γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制.γ射线对细胞有杀伤力,医疗上用来治疗肿瘤. 伽马射线是频率高于1.5 千亿亿 赫兹的电磁波光子.[1]伽马射线不具有电荷及静质量,故具有较α粒子及β粒子弱之电离能力.伽马射线具有极强之穿透能力及带有高能量.伽马射线可被高原子数之原子核阻停,例如铅或乏铀.。
伽马射线是否为实物粒子还存在一定争议。主要有以下两种观点:
1. 伽马射线不是实物粒子。伽马射线属于电磁波的一种,是高频短波长的电磁辐射。它不是具有自身质量的物质粒子,而是以光速传播的波动。伽马射线的粒子性质是由相对论的质量-能量等价关系推导出来的,但本质上它仍属于一种波动现象。
2. 伽马射线可视为类粒子。虽然伽马射线符合波动性质,但在某些方面又表现出粒子的特征,如照射与散射的实验结果。根据波粒二象性原理,伽马射线可以同时视为波动和粒子,具有半特性。在这种观点下,伽马射线可称为一种“类粒子”或量子包波。
目前主流观点更倾向于第二种,即伽马射线可视为一种“类量子粒子”。理由是:
1. 根据相对论,任何能量都具有质量,而高频电磁波的能量较大,也具有一定的类质量和动量。这使其在某种意义上表现出粒子的性质。
2. 伽马射线能够产生光电效应,受到电场和磁场的影响而偏转,这些都显示出其具有一定的粒子性。
3. 波粒二象性原理阐明,在微观量子领域,任何物理实在都可同时表现出波动性和粒子性。伽马射线作为一种高频电磁波,也不例外。
所以,综合当前理论和实验结果来看,伽马射线可理解为一种“类量子粒子”或“量子包波”。它既具有波的属性,又兼具基本的粒子特征。这种对双方性质的统一理解,有助于解释伽马射线的各种效应与行为。
  伽马射线是波长极短的电磁波,电磁波具有波粒二象性,伽马射线的粒子性更强一些,波动性弱一些。

  伽马射线,又称伽马粒子流,是原子核能级跃迁退激时释放出的射线,是波长短于0.01埃的电磁波。伽马射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。伽马射线对细胞有杀伤力,医疗上用来治疗肿瘤。

  伽马射线首先由法国科学家维拉德发现,是继阿尔法、贝塔射线后发现的第三种原子核射线。
γ射线,又称γ粒子流.γ-ray 波长短于0.2埃的电磁波.首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线.γ射线是因核能级间的跃迁而产生,原子核衰变和核反应均可产生γ射线 .γ射线具有比X射线还要强的穿透能力.
本文标题: 既然光有波粒二象性,电子又是概率云状态存在,那么卢瑟福实验的射线打进原子里时射线和电子会发生干扰吗
本文地址: http://www.lzmy123.com/jingdianwenzhang/339488.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    健康小科普--感冒了,该怎么办唐朝八品是小官吗
    Top