博克球在宇宙中起到了什么作用

发布时间: 2023-06-16 14:17:06 来源: 励志妙语 栏目: 经典文章 点击: 100

博克球状体的发展未来不过在1947年后的几十年中,尽管缺乏观测,但对博克球状体的理论研究还是有所进展的。这些理论的关键出发点一般...

博克球在宇宙中起到了什么作用

博克球状体的发展未来

不过在1947年后的几十年中,尽管缺乏观测,但对博克球状体的理论研究还是有所进展的。这些理论的关键出发点一般都是:在星际介质密度较大、温度较低且受到附近恒星辐射影响的区域,物质更容易集中,直到某一时刻,引力克服气体压力而成为支配性的力量,导致了气体云坍缩。
象Barnard 68这样的单个博克球状体是研究原恒星坍缩的绝佳实验室。在坍缩前,球状体本身处于暂时的流体平衡中,但这只是临界状态。如果博克球状体能积聚足够的星际气体,它就有可能形成恒星,否则,它的命运将是消散在宇宙空间中。颇具讽刺意味的是,博克球状体的极低温度(几至十几开尔文,可以算是宇宙中最寒冷的天体之一,此温度下凝结的一氧化碳、氮气等气体颗粒大量附着在尘埃表面)正是未来灿烂星光的先决条件。如果气体云温度过高,较强的气体压力将对将来的引力坍缩构成严重的阻碍,而后者是形成恒星的必经之路。只有在向外的气体压力足够小的情况下,引力才能在坍缩过程中使物质释放足够的能量,引燃核心。
而同样讽刺的是,阻挡了星光的尘埃同时也是研究博克球状体内部结构的重要手段。通过观测不同区域尘埃对背景星的消光和红化情况,人们可以了解不同区域的气体云密度和尘埃的分布情况,因为天文学家很早就掌握了星际消光和红化的规律。
当然,为做到这一点,必须观测足够多的背景星。但哪怕是较小的球状体也足以遮挡绝大部分来自后面的星光,所以如要达到足够的精度,灵敏的探测器和大口径望远镜是必需的。直到近年,欧洲南方天文台等机构的观测才发现,博克球状体的径向结构与恒星类似,为多层球状,自中心向周边密度依次递减,球体中与引力抗衡的只是气体压力,这与博克在40年代作出的预言相符。

恒星的一生是怎样的

恒星的一生是从形成到消失。

恒星演化是一个恒星在其生命期内(发光与发热的期间)的连续变化。生命期则依照星体大小而有所不同。单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。

1、以太阳为例: 原恒星 → 主序星 → 红巨星 → 白矮星 → 黑矮星。

2、质量小于0.08倍太阳质量:原恒星 → 褐矮星。

3、大于1.44倍太阳质量:原恒星 → 主序星 → 红巨星 → (超)新星 → 中子星(行星状星云)→ 黑矮星。

4、大于8倍太阳质量:原恒星 → 主序星 → 红巨星 → 红超巨星 → 脉动变星 → 超新星 → 黑洞/中子星 → 黑洞蒸发/黑矮星。

5、大于120倍太阳质量:核聚变过于剧烈,极不稳定,易解体。

扩展资料:

有关恒星:

以质量来计算,恒星形成时的比率大约是70%的氢和28%的氦,还有少量的其他重元素。因为铁是很普通的元素,而且谱线很容易测量到,因此典型的重元素测量是根据恒星大气层内铁含量。

由于分子云的重元素丰度是稳定的,只有经由超新星爆炸才会增加,因此测量恒星的化学成分可以推断它的年龄。重元素的成份或许也可以显示是否有行星系统。

参考资料来源:百度百科-恒星



1、形成阶段

在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。这样恒星便进入形成阶段。

2、稳定阶段

主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。

如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原恒星,原恒星吸附周围气云后继续收缩,表面温度不变,中心温度不断升高,引起温度、密度和气体成分的各种核反应。产生热能使气温升的极高,气体压力抵抗引力使原恒星稳定下来成为恒星。

3、晚年

恒星在发生“氦闪光”,闪光使大量能量的释放很可能把恒星外层的氢气都吹走,剩下的是氦的核心区。氦核心区因膨胀而减小了密度,以后氦就有可能在其中正常的燃烧了。氦燃烧的产物是碳,在氦熄火后恒星将有一个碳核心区氦外壳,由于剩下的质量太小引力收缩已不能达到碳的点火温度,于是它就结束了以氦燃烧的演化,而走向热死亡。

4、终局

小质量的恒星(如太阳),起先会膨胀,在这个阶段的恒星会称之为红巨星,然后会塌缩,变成白矮星,辐射、丧失能量,再成为黑矮星,最终消失。

扩展资料:

恒星的特征:

1、年龄

多数恒星的年龄在10亿至100亿岁之间,有些恒星甚至接近观测到的宇宙年龄—138.2亿岁。目前发现最老的恒星估计的年龄是134亿岁。

质量越大的恒星,寿命通常越短暂,主要是因为质量越大的恒星核心的压力也越高,造成燃烧氢的速度也越快。许多超大质量的恒星平均只有一百万年的寿命,但质量最轻的恒星(红矮星)以很慢的速率燃烧它们的燃料,寿命可以持续几十到上万亿年。

2、动能

一颗恒星相对于太阳运动可以提供这颗恒星的年龄和起源的有用信息,并且还包括周围的星系结构和演变。一颗恒星运动的成分包括径向速度是接近或远离太阳,和横越天空的角动量,也就是所谓的自行。

径向速度是由恒星光谱中的多普勒位移来测量,它的单位是公里/秒。恒星的自行是经由精密的天体测量来确认,其单位为百万分之一弧秒(mas)/年。经由测量恒星的视差,自行可以换算成实际的速度单位。恒星自行速率越高的通常就是比较靠近太阳,这也使高自行的恒星成为视差测量的理想候选者。

参考资料来源;百度百科-恒星

1、诞生

恒星形成的初始阶段几乎完全被密集的星云气体和灰尘所掩盖。通常,正在产生恒星的星源会通过在四周光亮的气体云上造成阴影而被观测到,这被称为博克球状体。

2、成年期

恒星形成之后会落在赫罗图的主星序的特定点上。小而冷的红矮星会缓慢地燃烧氢,可能在此序列上停留数千亿年,而大而热的超巨星会在仅仅几百万年之后就离开主星序。

像太阳这样的中等恒星会在此序列上停留一百亿年。太阳也位于主星序上,被认为是处于中年期。在恒星燃烧完核心中的氢之后,就会离开主星序。

3、中年期

在形成几百万到几千亿年之后,恒星会消耗完核心中的氢。大质量的恒星会比小质量的恒星更快消耗完核心的氢。在消耗完核心中的氢之后,核心部分的核反应会停止,而留下一个氦核。失去了抵抗重力的核反应能量之后,恒星的外壳开始引力坍缩。

核心的温度和压力像恒星形成过程中一样升高,但是在一个更高的层次上。一旦核心的温度达到了1亿开氏度,核心就开始进行氦聚变,重新通过核聚变产生能量来抵抗引力。恒星质量不足以产生氦聚变 释放热能,逐渐冷却,成为白矮星。

4、衰退期

晚年到死亡以三种可能的冷态之一为终结:白矮星,中子星,黑洞。

扩展资料:

恒星的运动:

世间万物无不都在运动 ,恒星虽然看似在天空中恒定不动,其实它也有自己的运动。由于不同恒星运动的速度和方向不一样,它们在天空中相互之间的相对位置会发生变化,这种变化称为恒星的自行。

全天恒星之中,包括那些肉眼看不见的很暗的恒星在内,自行最快的是巴纳德星,达到每年10.31角秒(1角秒是圆周上1度的3600分之一)。一般的恒星,自行要小得多,绝大多数小于1角秒。

恒星自行的大小并不能反映恒星真实运动速度的大小。同样的运动速度,距离远就看上去很慢,而距离近则看上去很快。因为巴纳德星离开我们很近,不到6光年,所以真实的运动速度不过88 km/s。

参考资料来源:百度百科—恒星演化

参考资料来源:百度百科—恒星

形成

在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。

星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。这就是星坯演化的主要物理机制。   最新观测发现S1020549恒星下面我们利用经典引力理论大致的讨论这一过程。考虑密度为ρ、温度为T、半径为r的球状气云系统,气体热运动能量:

ET= RT= T 

(1) 将气体看成单原子理想气体,μ为摩尔质量,R为气体普适常数

为了得到气云球的的引力能Eg,想象经球的质量一点点移到无穷远,将球全部移走场力作的功就等于-Eg。当球质量为m,半径为r时,从表面移走dm过程中场力做功:

dW=- =-G( )1/3m2/3dm 

(2) 所以:-Eg=- ( )1/3m2/3dm= G( M5/3 

于是:Eg=- (2),

气体云的总能量:E=ET+EG (3)   灵魂星云将形成新的行星热运动使气体分布均匀,引力使气体集中。现在两者共同作用。当E>0时热运动为主,气云是稳定的,小的扰动不会影响气云平衡;当E<0时,引力为主,小的密度扰动产生对均匀的偏离,密度大处引力增大,使偏离加强而破坏平衡,气体开始塌缩。由E≤0得到产生收缩的临界半径:

(4) 相应的气体云的临界质量为:

(5) 原始气云密度小,临界质量很大。所以很少有恒星单独产生,大部分是一群恒星一起产生成为星团。球形星团可以包含10^5→10^7个恒星,可以认为是同时产生的。

我们已知:太阳质量:MΘ=2×10^33,半径R=7×10^10,我们带入(2)可得出太阳收缩到今天这个状态以释放的引力能

太阳的总光度L=4×10^33erg.s-1如果这个辐射光度靠引力为能源来维持,那么持续的时间是:

很多证明表明,太阳稳定的保持着今天的状态已有5×10^9年了,因此,星坯阶段只能是太阳形成像今天这样的稳定状态之前的一个短暂过渡阶段。这样提出新问题,星坯引力收缩是如何停止的?此后太阳辐射又是以什么为能源?

稳定期

主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原恒星,原恒星吸附周围气云后继续收缩,表面温度不变,中心温度不断升高,引起温度、密度和气体成分的各种核反应。产生热能使气温升的极高,气体压力抵抗引力使原恒星稳定下来成为恒星,恒星的演化是从主序星开始的。   哈勃观测到两颗燃烧剧烈的超级恒星恒星的成份大部分是H和He,当温度达到104K以上,即粒子的平均热动能达1eV以上,氢原子通过热碰撞就充分的电离了(氢的电离能是13.6eV),在温度进一步升高后,等离子气体中氢核与氢核的碰撞就可能引起核反应。对纯氢的高温气体,最有效的核反应系列是所谓的P-P链:

其中主要是2D(p,γ)3He反应。D含量只有氢的10-4左右,很快就燃完了。如果开始时D比3He含量多,则反应生成的3H可能就是恒星早期3He的主要来源,由于对流到达恒星表面的这种3He,有可能还保留到现在。

Li,Be,B等轻核和D一样结合能很低,含量只是H 的2×10-9K左右,当中心温度超过3×106K就开始燃烧,引起(p,α)和(p,α)反应,很快成为3He和4He。中心温度达到107K,密度达到 105kg/m3左右时,产生的氢转化为He的41H→4He过程。这主要是p-p和CNO循环。同时含有1H和4He是发生p-p链反应,有以下三个分支组成:

p-p1(只有1H) p-p2(同时有1H、4He) p-p3 

或假设1H 和4He的重量比相等。随温度升高,反应从p-p1逐渐过渡到p-p3,

而当T>1.5×107K时,恒星中燃烧H的过程就可过渡到以CNO循环为主了。

当恒星内混杂有重元素C和N时,他们能作为触媒使1H变为4He,这就是CNO循环,CNO循环有两个分支:

或总反应率取决于最慢的14N(p,γ)15O、15N的(p,α)和(p,γ)反应分支比约为2500:1。

这个比值几乎与温度无关,所以在2500次CNO循环中有一次是CNO-2。

在p-p链和CNO循环过程中,净效果是H燃烧生成He:

在释放出的26.7MeV能量中,大部分消耗给恒星加热和发光,成为恒星的主要来源。

前面我们提到恒星的演化是从主星序开始的,那么什么是主星序呢?等H稳定地燃烧为He时,恒星就成了主序星。人们发现有百分之八十至九十的恒星都是主序星,他们共同特征是核心区都有氢正在燃烧,他们的光度、半径和表面温度都有所不同,后来证明:主序星的定量上差别主要是质量不同,其次是他们的年龄和化学成份,太阳这段历程约千万年。

观察到的主序星的最小质量大约为0.1M⊙。模型计算表明,当质量小于0.08M⊙时,星体的收缩将达不到氢的点火温度,从而形不成主序星,这说明对于主序星它有一个质量下限。观察到的主序星的最大质量大约是几十个太阳质量。理论上讲,质量太大的恒星辐射很强,内部的能量过程很剧烈,因此结构也越不稳定。但是理论上没有一个质量的绝对上限。

当对某一星团作统计分析时,人们却发现主序星有一个上限,这说明什么?我们知道,主序星的光度是质量的函数,这函数可分段的用幂式表示:

L∝Mν 

其中υ不是一个常数,它的值大概在3.5到4.5之间。M大反映主序星中可供燃烧的质量多,而L大反映燃烧的快,因此主序星的寿命可近似用M与L的商标来标志:

T∝M-(ν-1) 

即主序星寿命随质量增大而按幂律减小,如果整个星团已存在的年龄为T,那就可以由T与M的关系式求出一个截止质量MT。质量大于MT的主序星已结束核心的H燃烧阶段而不是主序星了,这就是观察到由大量同年龄星组成的星团有上限的原因。

现在我们就讨论观测到的恒星中大部分是主序星的原因,表1根据一25M⊙的恒燃烧阶段点火温度(K) 中心温度(g. cm-3) 持续时间(yr) 

H 4×107 4 7×106 

He 2×108 6×102 5×105 

C 7×108 6×105 5×102 

Ne 1.5×109 4×106 1 

O 2×109 1×107 5×10-2 

Si 3.5×109 1×108 3×10-3 

燃烧阶段的总寿命7.5×106 

星演化模型,列出了各种元素的点火温度及燃烧所持续的时间。从表上看出,原子序数大的核有更高的点火温度,Z大的核不仅难于点火,点火后燃烧也更剧烈,因此燃烧持续的的时间也就更短。这颗25M⊙的表1 25M⊙恒星演化模型,模型星的燃烧阶段的总寿命为7.5×106年,而其中百分之九十以上的时间是氢燃烧阶段,即主星序阶段。从统计角度讲,这表明找到一颗处于主星序阶段的恒星几率要大。这正是观察到的恒星大多数为主序星的基本原因。

晚年

主序后的演化由于恒星形成是它的主要成份是氢,而氢的点火温度又比其他元素都低,所以恒星演化的第一阶段总是氢的燃烧阶段,即主序阶段。在主序阶段,恒星内部维持着稳衡的压力分布和表面温度分布,所以在整个漫长的阶段,它的光度和表面温度都只有很小的变化。下面我们讨论,当星核区的氢燃烧完毕后,恒星有将怎么进一步演化? 

恒星在燃烧尽星核区的氢之后,就熄火,这时核心区主要是氦,它是燃烧的产物,外围区的物质主要是未经燃烧的氢,核心熄火后恒星失去了辐射的能源,它便要引力收缩是一个起关键作用的因素。一个核燃烧阶段的结束,表明恒星内各处温度都已低于在该处引起点火所需要的温度,引力收缩将使恒星内各处的温度升高,这实际上是寻找下一次核点火所需要的温度,引力收缩将使恒星内各处的温度全面的升高,主序后的引力收缩首先点着的不是核心区的氦(它的点火温度高的太多),而是核心与外围之间的氢壳,氢壳点火后,核心区处于高温状态,而仍没核能源,它将继续收缩。这时,由于核心区释放的引力位能和燃烧中的氢所释放的核能,都需要通过外围不燃烧的氢层必须剧烈地膨胀,即让介质辐射变得更透明。而氢层膨胀又使恒星的表面温度降低了,所以这是一个光度增加、半径增加、而表面变冷的过程,这个过程是恒星从主星序向红巨星过渡,过程进行到一定程度,氢区中心的温度将达到氦点火的温度,于是又过渡到一个新阶段--氦燃烧阶段。

在恒星中心发生氦点火前,引力收缩以使它的密度达到了103g. cm-3的量级,这时气体的压力对温度的依赖很弱,那么核反应释放的能量将使温度升高,而温度升高反过来又加剧核反应速率,于是一旦点火,很快就会燃烧的十分剧烈,以至于爆炸,这种方式的点火称为“氦闪光”,因此在现象上会看到恒星光度突然上升到很大,后来又降的很低。

另一方面,当引力收缩时它的密度达不到103g. cm-3量级,此时气体的压力正比与温度,点火温度升高导致压力升高,核燃烧区就会有所膨胀,而膨胀导致温度降低,因此燃烧就能稳定的进行,所以这两种点火情况对演化进程的影响是不同的。

恒星在发生“氦闪光”之后又怎么演变呢?闪光使大量能量的释放很可能把恒星外层的氢气都吹走,剩下的是氦的核心区。氦核心区因膨胀而减小了密度,以后氦就有可能在其中正常的燃烧了。氦燃烧的产物是碳,在氦熄火后恒星将有一个碳核心区氦外壳,由于剩下的质量太小引力收缩已不能达到碳的点火温度,于是它就结束了以氦燃烧的演化,而走向热死亡。

由于引力塌缩与质量有关,所以质量不同的恒星在演化上是有差别的。

M<0.08M⊙的恒星:氢不能点火,它将没有氦燃烧阶段而直接走向死亡。

0.08<M<0.35M⊙的恒星:氢能点火,氢熄火后,氢核心区将达不到点火温度,从而结束核燃烧阶段。

0.35<M<2.25M⊙的恒星:它的主要特征是氦会点火而出现"氦闪光"。

2.25<M<4M⊙的恒星:氢熄火后氦能正常地燃烧,但熄火后,碳将达不到点火温度。这里的反应有:

在He反应初期,温度达到108K量级时,CNO循环产生的13C,17O能和4He发生新的(α,n)反应,形成16O和20Ne,在He反应进行了很长时间后,20Ne(p,γ) 21Na(β+,ν) 21Na中的21Na以及14N吸收两个4He形成的22Ne能发生(α,n)反应形成24Mg和25Mg等,这些反应作为能源并不重要,但发出的中子可进一步发生中子核反应。

4<M<8→10M⊙的恒星,这是一个情况不清楚的范围,或许碳不能点火,或许出现"碳闪光",或许能正常地燃烧,因为这是最后的中心温度已较高,一些较敏感的因素,如:中微子的能量损失把情况弄得模糊了。

He反应结束后,当中心温度达到109K时,开始发生C,O,Ne 燃烧反应,这主要是C-C反应,O-O反应,以及20Ne的γ,α反应:

8→10M⊙<M的恒星:氢、氦、碳、氧、氖、硅都能逐级正常燃烧。最后在中心形成一个不能在释放能量的核心区,核心区外面是各种能燃烧而未烧尽的氢元素壳层。核燃烧阶段结束时,整个恒星呈现由内至外分层(Fe,Si,Mg,Ne,O,C,He,H)结构。

终局

现在我们已经知道,对质量小于8→10M⊙的恒星,它会因不能到达下一级和点火温度而结束它的核燃烧阶段;对于质量更大的恒星,它将在核心区耗尽燃料之后结束它的核燃烧阶段,在这以后,恒星的最终归宿是什么? 

小质量的恒星(如太阳),起先会膨胀,在这个阶段的恒星我们称之为红巨星,然后会塌缩,变成白矮星,再成为黑矮星,最终消失。

大质量的恒星,≥7个太阳密度(8→10M⊙<M)的恒星则会变成超级太阳(超新星),它会选择以超新星爆发的形式结束生命,最终会成为黑洞(古代有记载,一颗超新星爆发,连续几个月都可以在晚上看书)

一旦停止了核燃烧,恒星必定要发生引力收缩,这是因为恒星内部维持力学平衡的压力是与它的温度相联系的。因此,如果恒星在一?quot;最终"的平衡位形,它必须是一个"冷的"平衡位形,即它的压力与它的温度无关。

主序星核心H耗尽后,离开主序是阶段开始了它最后的历程。结局主要取决于质量。对于质量很小的星体由于质量小,物体内部的自引力并不重要,固体内部的平衡是正负离子间的净库仑引力于电子间的压力来达到平衡的。

当星体质量再大些,直到自引力不可忽略时,这时自引力加大了内部的密度和压力,压力的加大是物质发生压力电离,从而逐渐是固体的电约束瓦解,而过渡为等离子气体。加大质量,即加大密度,此时压力于温度无关,从而达到一种"冷的"平衡位形,等离子体内电子的动能一大足以在物质内部引起β衰变:

这里p是原子核中的质子,这样的反应大致在密度达到108 g. cm-3的时候,它将逐渐地是负离子体中的原子核变为富中子核,原子核中出现过多的中子,导致核结构松散,当密度超过4×1011g. cm-3是中子开始从原子核中分离出来,成为自由中子,自引力于中子间压力达到平衡。如果当质量变大使中子气体间压力已不能抵御物质自引力,而形成黑洞,但由于大多数恒星演化后阶段使得质量小于它的初始质量,例如恒星风,"氦闪光",超新星爆发等,它们会是恒星丢失一个很大的百分比质量,因此,恒星的终局并不是可以凭它的初始质量来判断的,它实际上取决于演化的进程。那么我们可以得出这样的结论。8→10M⊙以下的恒星最终间抛掉它的一部分或大部分质量而变成一个白矮星。8→10M⊙以上的恒星最终将通过星核的引力塌缩而变成中子星或黑洞,也就是说,塌缩的内核质量在太阳1.44倍——到3.2倍的恒星,最终成为中子星,塌缩的内核质量在太阳3.2倍以上的恒星,最终成为黑洞。

现在观测到的恒星质量范围一般为0.1→60M⊙。质量小于0.08M⊙的天体不能达到点火温度。因此,不发光,不能成为恒星。质量大于60M⊙的天体中心温度过高而不稳定,至今仅发现20个以下。

恒星诞生于以氢为主,并且有氦和微量其他重元素的云气坍缩。一旦核心有足够的密度,有些氢就可以经由核聚变的过程稳定的转换成氦。恒星内部多余的能量经过辐射和对流组合的携带作用传输出来;恒星内部的压力则阻止了恒星在自身重力下的崩溃。一旦在核心的氢燃料耗尽,质量不少于0.5太阳质量的恒星,将膨胀成为红巨星,在某些情况下更重的化学元素会在核心或包围着核心的几层燃烧。这样的恒星将发展进入简并状态,部分被回收进入星际空间环境的物质,将使下一代恒星诞生时正元素的比例增加。另一方面,由于氦核心区因膨胀而减小了密度,以后氦就有可能在其中正常的燃烧了。氦燃烧的产物是碳,在氦熄火后恒星将有一个碳核心区氦外壳,由于剩下的质量太小引力收缩已不能达到碳的点火温度,于是它就结束了以氦燃烧的演化,而走向热死亡。

地球绕着太阳转了45亿圈,那么它第一圈是怎么转起来的呢?

地球和太阳都漂浮在宇宙空间中,而且地球正绕着太阳公转,从诞生以来地球大概已经转了45亿圈!当然这是天体运行给大家的印象,因为宇宙中都失重,所以“漂浮”一说都能说得清,但转动是怎么来的?真是上帝推了它一把?

太阳系怎么形成的?

其实这个问题要从恒星系形成开始说起,因为无论是地球的公转还是自转,又或者太阳的自转运动都和这个过程形成有关!

星云与坍缩

早在18世纪拉普拉斯和康德以及死威登堡就提出太阳系诞生于星云,其实这非常正确,绝大部分的天体都诞生于星云,只是它们可能处在不同的发展阶段!诞生太阳系的这片星云位于银河系的猎户座悬臂,古尔德袋中的本地泡里的本星际云,其中的奥尔特云中诞生了太阳系!



只要有一具小型望远镜,那么我们就可以看到很多星云,比如猎户座著名的星云M42,在它的内部正在诞生难以计数的恒星,但却不是每一片星云都能诞生恒星它需要几个条件,在满足这些条件的情况下,它们才有可能诞生出恒星系。

星云质量满足要求

与之相关的一个名词是伯纳-依伯特质量,这是天体物理中一个加压的介质嵌入一个等温气体球时,仍然可以维持流体静力平衡的最大质量,当气体云的质量大于伯纳-依伯特质量时,将会无可避免的发生坍缩以形成更小和更密度更高的天体。



有两种情况可以促成这个条件,受到扰动范围长度满足条件,或者受到扰动区域的密度满足条件,都可以引发最终的坍缩,这是一个天体形成所必须经历的过程,包括第一颗恒星也一样。

形成博克球状体

这是星云开始坍缩后形成高密度坍缩区域,一个博克球状体的典型质量为10-50个太阳质量大小,内部大都是请分子云,也有氦以及其他超新星爆发后的其他金属物质(原初星云则不存在超新星爆发后的金属物质),博克球状体中形成的可能并不止一颗恒星,有可能会形成联星或者聚星系统。



哈勃空间望远镜的WFPC2拍摄的在电离氢区IC 2944内的博克球状体。

博克球状体是1940年代天文学家巴特·博克首先发现的,这些正在经历坍缩的区域很像一个茧,由于还未发光,它们仅仅在红外波段可能会比较明亮,而可见光则难以发现!

形成原始坍缩的角动量

一旦开始坍缩,那么星云物质就会受到坍缩区域影响而运动,在质心的影响下,物质会沿着测地线运动,根据所在位置与动量的差异,这测地线的运动方式有两个,一是掉入质心,二是绕N圈后掉入质心,或者动量足够,成为环绕质心的物质。

坍缩过程中形成的螺旋运动,其实并非物质所愿,而只是物质沿着测地线运动而已,无论是否愿意,在引力弯曲空间内的运动方式只有测地线唯一一条路,除非它是一颗量子化的电子,可以不遵守这个规律,但包含电子对原子依然遵守。

坍缩核心形成恒星

其实从坍缩核心到原恒星有很长的一条路要走,本文限于篇幅就不叽叽歪歪了。坍缩的角动量会让星云扁平化(这就是吸积盘的来历),这为日后的行星形成也打下了基础,因为扁平化的星云密度更高,内部物质碰撞,融合形成行星胚子,它会在环绕中心坍缩核心的公转过程中继续长大。


正在形成中的原行星盘

与恒星核形成条件类似,行星核也会经历一个物质坍缩过程的测地线运动,这是天体坍缩过程中的必经之路中心的恒星核在成长,行星核也在成长,太阳系形成过程中先后顺序也类似,但我们可以猜测是大行星先诞生,因为它有更多的时间成长么。



原恒星形成初期,会在外部形成一个不透明的外壳,因为都是星云的实体物质,但随着物质落入吸积盘中,恒星逐渐开始发光,早期的原恒星非常明亮,因为有很大一部分能量来自引力坍缩(可能高达太阳的100倍),恒星内核的核聚变高温逐渐整颗恒星形成一个超级等离子球体,最终会又引力坍缩能释放到核聚变能量释放的转换过程。


年轻恒星HD 141943和HD 191089的岩屑盘

原恒星的吸积盘中形成行星有两种机制,分别是引力不稳定性如前文所说,还有是冲流不稳定性,局部物质密度过高,其实和恒星形成机制有些类似,但又不一样,但无论如何,行星也在坍缩中形成了!



所以第一圈还轮不到地球,因为在形成地球的前身中就已经绕了N圈了,整一个坍缩过程中,无论是天体的自转还是公转都形成了,不管上帝是否有推了最初的那一把,到现在为止,已经转了数十亿年。

如何描述宇宙中的漂浮的天体

用漂浮来形容是不正确的,因为只有在重力条件下才存在漂浮这个概念,无论是水中还是空气中!那么如何来描述宇宙中的各个天体状态呢?

运动是对它们的唯一描述!

上文说了星云坍缩过程中的测地线运动,有两个结果,一个是绕着绕着掉下去了,另一个绕着绕着成了公转天体,这是因为测地线运动的角动量产生的向心力与质心之间的引力平衡,两者处在一个恐怖平衡状态,如果天体速度高一点,那么它会逐渐抬升轨道,如果速度第一点,那么它会更靠近恒星!简单的说就有可能掉入恒星!

那么地球有可能掉入太阳吗?

答案是不会,因为太阳正在减少质量(每秒烧掉6.5亿吨氢,产生450万吨质量亏损),所以地球会逐渐逃离太阳,但要注意下的是这个逃离速度很慢,听说每年都不超过1厘米,而且未来会有一个上限!因为太阳在50亿年后成为一颗白矮星时,它的质量将不会再改变,所以地球的逃逸距离是有限度的。无论怎么样,跟着太阳混那就混到死,地球没有逃离机会。

左上红圈是巨引源所在

太阳也没有漂浮在宇宙中,它正以每秒220千米的速度环绕银心公转,如果太阳失掉这个速度,那么它也会掉入银心黑洞!而银河系则以每秒超过600千米的速度朝着巨引源前进,不过它永远都掉不到巨引源里,因为巨引源远在2.5亿光年外,这个距离上宇宙的膨胀速度高达4400千米/秒,银河系永远都追不上!

地球由于受太阳的引力作用,始终绕着太阳进行公转,当它形成的那一刻,就注定了它是一个运动的天体,必然沿着自己的轨道进行运行。
是因为太阳的引力。太阳的引力吸引着地球围绕着太阳转,就这样转了几十亿圈。
这就要从宇宙大爆炸说起了,有人猜测可能是在爆炸中形成的超级大的威力而导致地球开始自转。

博克球状体的基本介绍

英文名称为:
博克球状体是一种小的暗星云,被认为是恒星形成的区域。

宇宙正在持续膨胀,星云为什么聚在一起形成恒星了?

宇宙空间对于我们宏观意义上来理解的话,那么它是空无一物的存在,假如一罐氢气泄漏入宇宙,想找回来可就难了,因为在几乎零的大气压下,气体扩散会无限扩散,一直达当前宇宙的临界密度。那么问题来了,都说恒星是宇宙大爆炸的原初气体或者超新星爆发后的星云坍缩而成,这些物质为什么不会无限扩散,反而能形成无数恒星呢?下面我们来简单探讨下这个看起来非常有趣的话题。


一、宇宙的临界密度

宇宙暴涨论是现代宇宙诞生的主流科学理论,在这个过程中所表现出来的就是引力和斥力之间的争夺,万有引力定律告诉我们,物质会产生引力组织天体进一步远离,当然如果可能的话它还会因此靠近,最终的导向如何取决于宇宙中物质的密度的大小!

观测到的宇宙是平坦的

根据欧空局普朗克卫星对如下几个方面的观测:

宇宙微波背景辐射

重子声速振荡

引力透镜

三者的观测相结合,发现当前宇宙平坦为0.001±0.006,即从当前观测看来,宇宙在6‰的精度上仍然是非常平坦的


上图公式是以此为依据从爱因斯坦广义相对论中推导出的宇宙临界密度计算公式:

H是哈勃参数(哈勃常数是指哈勃参数现在的数值,它会随时间改变)

G是万有引力常数(这个数值不变)

假设以WMAP在2006年测得的70千米/秒/百万秒差距计算,宇宙的临界密度为3.6×10^-30g/cm^3,这个比例算起来大概每立方米只有一个质子的质量!


这个临界密度表示什么意义?简单一点说,如果宇宙平局密度小于这个密度,那么膨胀不可避免,宇宙将是开放式的,如果宇宙平均密度大于这个密度,那么未来可能会趋向于收缩!如果是等于,那么宇宙将保持在恐怖的临界状态,而理论上任何细微的扰动都可能打破这个平衡,继而走向膨胀或者坍缩。

二、星云坍缩与恒星诞生的秘密

上文我们了解了宇宙的临界密度,接着我们来看看诞生出恒星与行星的星云,它们来自哪里,又为什么会坍缩?为什么又有那么多星云没有坍缩?

1、星云的来源

星云的来源有几种,宇宙大爆炸时期的原初星云,从暴涨时代的高温下降后,从夸克胶子浆中形成的中子与质子结合,形成氢、氦以及少量锂原子核,而在温度进一步降低后电子和原子核结合成原子(包括氢、氦以及锂元素),形成弥漫的星云。

另一种则是从这些星云中形成的恒星发展而来,大质量恒星晚期会形成超行星状星云以及超新星等,会将恒星整个生涯中积累的大量元素(质量越高,产生元素越多越重)通过超新星爆发扩散成尘埃云,但由于恒星存在辐射层结构,大部分的氢元素没有燃烧,因此又重新回归宇宙,成为下一代恒星的来源。

2、星云为什么会坍缩

其实星云的密度还不如月球表面气体原子密度,月球表面每立方厘米的空间中有超过10^6个原子,在地球附近的太阳系内宇宙空间有数十个原子/立方厘米,而在本星际星云中则只有0.3个原子/立方厘米!但这依然比宇宙的临界密度高数十万倍,因此理论上这些原子之间仍然存在引力坍缩的可能!

问题来了:为什么这些星云还没有坍缩?

引起星云坍缩的是金斯不稳定性,这有两种因素,一种是星云内部满足金斯不稳定条件,另一种星云受到附近恒星级能量爆发的影响满足金斯不稳定性条件,比如超新星或者中子星合并等天文事件。

金斯不稳定性

当尘埃云的热运动扩散动力不足以抵抗引力时星云会发生坍缩,有如下两个条件:

受到超新星扰动密度区域长度大于金斯长度时,会发生引力坍缩

尘埃云密度大于金斯密度或质量大于金斯质量时,也会发生引力坍缩

当然这些条件并不是所有星云都能满足,或者说一处星云内部已经有多处满足这个要求,比如我们能观测到著名星云-猎户座的M42则早已是银河系内首屈一指的恒星工厂。

3、恒星的诞生

我们看不到太阳系诞生的过程,但在距离地球1400光年以外的猎户座星云却是太阳系诞生过程最好写照,在星云内部,由于金斯不稳定性,出现了多处坍缩,在每一个坍缩区都有可能形成一个恒星系!


上图国家地理纪录片《旅行到宇宙边缘》猎户座星云大工厂的部分情节GIF截图,制作非常精美,类似的情节在《哈勃太空望远镜》也有描述,后者更为详尽,因为是3D版本,对M42的3D结构做了非常详尽的表现。

博克球状体

尘埃云的某处一旦开始坍缩,密集区域就会形成博克球状体,这是在恒星形成早期出现的高密度区域,一般典型的大小为一光年左右,质量约为太阳的10-50倍,这也是联星和聚星系统形成的区域

博克球状体:它很像某种昆虫的茧,是星云早期坍缩开始形成恒星的重要标志,荷兰裔美国天文学家巴特·博克在1940年首次发现,但直到1990年才通过分析近红外波段才证实恒星在博克球状体内诞生。


上图是著名的船底座星云的悬浮博克球状体,在船底座星云内部,博克球状体处处可见,在船底座星云中的恒星伊塔的辐射电离下,加上多个波段曝光后合成的博克球状体图像有一种不真实的梦幻感!

星云中的湍流

但在这个过程中,也会因为星云开始坍缩后的湍流增加导致某些星云团块碎裂,如果这些碎裂的团块质量仍然超过金斯质量,那么这些分裂的团块内部仍然可能诞生恒星。在这里有一个有趣的现象,因为星云坍缩后会导致湍流结构,因此某些团块可能会流体动力效应而被驱逐出星云,形成奇特的现象:逃离星云的原恒星。


原恒星的诞生

当博克球状体继续坍缩,密度的增加会将引力势能转换为热能,内核温度上升。当然原恒星逐渐达到流体静力平衡时(天体热压力与引力平衡的状态),原恒星就在引力中心形成了,一般情况下,原恒星周围都存在尘埃盘,因为还会继续收缩!


2021年9月,偶走南方天文台阿塔卡马毫米/亚毫米波阵列对距离地球460光年的金牛座年轻恒星星HL Tauri进行了持续成像观测,从上图处理后的原行星盘中可以清晰看到同心结构已经形成,每一个同心圆都有表示有行星正在成型。


阿塔卡马毫米/亚毫米波阵列在240 GHz尘埃连续谱观测到的20个原行星盘。

三、宇宙未来的趋势,膨胀还是坍缩,还是维持现状?

星云的坍缩,恒星的形成不过是宇宙各个角落正在诞生的无数故事中的一个,那么整体宇宙未来的命运如何呢?我们是否能根据临界密度来做一个判断吗?

根据可观测宇宙的大小以及观测到的物质计算得到的密度只有2×10^-31g/cm^3,似乎差了一个数量级,但这仅仅包含可观测的显物质,根据宇宙物质模型,还有26.8%的暗物质


加上暗物质比例,再修正哈勃常数的差异,当前宇宙平均密度与临界密度几乎相差无几,那么宇宙的未来到底如何?吃瓜群众很是期待,在线急等。

空间曲率K与宇宙学常数Λ

“宇宙学常数Λ,曾经是爱因斯坦引入的概念,在与哈勃的交流后抛弃了宇宙常数,但勒梅特又“非正式”的将它请了回来,而根据现代宇宙学的发展,似乎又要给它一个正式的名分”

宇宙的形态是由这两个参数所决定的,K=0时是欧几里得空间(平直空间),Λ=0表示静态,Λ>0表示斥力,Λ<0表示引力!那么整体上所有的组合就如下图:



在几个可能中,临界状态是最不可能的,因为任何的扰动都会导致宇宙失去这个临界平衡的状态!而在1998年,美国加州大学伯克利分校索尔·波尔马特和澳大利亚国立大学布莱恩·施密特领导的两个小组分别通过对Ia型超新星进行测距时,不约而同的发现了宇宙正在加速膨胀。这个观测证实了一个由来已久的猜想,宇宙正走向热寂!


加速膨胀的结果就是我们的可观测宇宙会有一个视界(这和黑洞的视界有所不同),因为遥远的宇宙边缘星系正以超过光的速度远离,如果仅凭现当前的电磁波以及引力波观测手段,将永远都不可能了解视界以外的宇宙。

因为星云含有的物质非常多,然后物质相互吸引,越聚越多,就慢慢形成了恒星。
因为引力。星云互相之间都有引力的,慢慢吸引到一起,越聚越多就形成恒星了。
众所周知,地球上的大多数气体通常都是分散的,但这使人们感到非常好奇。为什么气体总是在宇宙中聚集在一起形成恒星和恒星?在寻找相关信息时,我们可以知道宇宙中的气体并非不会扩散,而是随着时间的推移它们会逐渐变得越来越大,从而形成我们通常在宇宙中所做的事情。星云见过。我们都知道星云的体积非常大,因此不可能在短时间内扩散,因此我们在宇宙中看到的气体总是会聚集在一起。
本文标题: 博克球在宇宙中起到了什么作用
本文地址: http://www.lzmy123.com/jingdianwenzhang/315900.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    有什么介绍恐龙详尽的科普书籍吗四十岁后需要注意哪些健康问题
    Top