相对论如何进行验证

发布时间: 2022-11-30 03:00:35 来源: 励志妙语 栏目: 经典文章 点击: 89

狭义相对论的实验验证验证狭义相对论的实验大体上分为六大类:①相对性原理的实验检验;②光速不变原理的实验检验;③时间膨胀实验;④缓...

相对论如何进行验证

狭义相对论的实验验证

验证狭义相对论的实验大体上分为六大类:①相对性原理的实验检验;②光速不变原理的实验检验;③时间膨胀实验;④缓慢运动媒质的电磁现象实验;⑤相对论力学实验;⑥光子静止质量上限的实验。关于相对性原理的实验检验,电动力学和光学的很多例子,特别是运动物体的电磁感应现象,都是很有说服力的,不再赘述,着重说明其余五大类的验证实验。 有关电子静止质量的实验都没有观察到光子有静质量,因此只给出了光子静质量的上限。对库仑定律的检验给出的上限是 1.6×10-47克,根据银河系旋臂磁场范围对光子静质量上限做的估计约为10-59克。
除了上述六类主要的实验外,还有其他形式的实验。所有这些实验都没有观察到同狭义相对论有什么矛盾。此外,狭义相对论在相对论性量子力学、量子场论、粒子物理学、天文学、天体物理学、相对论性热力学和相对论性统计力学等领域中的成功应用,也都为它的正确性提供了丰富的证据。
虽然狭义相对论在理论的逻辑结构和形式上是很完美的,在实验上已有了非常牢固的基础,但人们仍对它不断深入进行研究:理论方面,探讨它在新领域中的应用;实验方面,使用新的观测方法和提高了测量精度的方法,更精密地检验它的正确性。此外还有不少实验试图观察超光速现象,但至今并没有得到令人信服的结果。

检验相对论的最佳途径是什么?

自爱因斯坦为解释迈克耳孙-莫雷干涉试验结果,于1905年发表了第一篇狭义相对论论文以来,已经过去了近百年时光。相对论的某些结论也得到了部分物理实验、观测结果的支持,如星光的偏转、高速运动粒子寿命延长、水星近日点前移、引力红移、空间弯曲等。

尽管如此,但从严格意义上讲,相对论仍存在着一个严重缺陷,其假设光(或电磁波)的运动速度在任何惯性系中恒定不变且其速度为宇宙中物质运动速度的极限。因此,验证相对论理论的正确性的最好、最直接的方法是测量运动速度不同的物体所发出的光(或电磁波)的运动速度是否真的相同。而以上各种试验和测量都不能直接证明光速是恒定不变的,更不能证明不同惯性系中的时间、尺规是不同的。

随着科学技术的发展与进步,我们完全有能力直接测量运动速度不同的物体所发出的光(或电磁波)的运动速度的量值,从而直接检验相对论的正确性。对直接测量电磁波速度量值的设想,将在本文最后章节中详细阐述。

一、如何认识支持相对论理论的几个试验观测结果

我们知道,在客观现实中,一件事物往往可能存在多种解释和可能。因此,支持相对论的一些试验、观测结论是否只存在唯一的解释和可能呢?这一点有必要进行探讨。

1. 迈克耳孙-莫雷干涉试验

众所周知,光波的干涉必须满足两个基本条件:一是光波必须是同一光源(甚至必须是同一光源的同一区域)发出的;二是光的频率必须单一。另一方面,干涉条纹的间距主要与波长有关,而与频率、波速无直接关系(当然,波长是波速与频率的函数);干涉条纹的图形形状主要与两束路径不尽相同的光的波程差与波长的比值有关,而与波速、频率无直接关系。因此,迈克耳孙-莫雷干涉试验未能测量出早晨与傍晚的太阳光或沿地球自转方向与垂直该方向的两束光间的干涉条纹的变化这样一个结论可以有如下多种可能性:

.①太阳光相对于地球表面某一点的运动速度不因地球表面此点与太阳的相对运动速度或方向的变化而变化(即爱因斯坦光速不变原理或称作假设);

②虽然试验中早晨与傍晚的太阳光的速度不同,但因其频率也不同(多普勒效应),即早晨光速高,频率也高;傍晚光速低,频率也低(两者成比例变化,保持了波长不变)。因此,试验装置无法检测出干涉条纹的变化就在意料之中了(波速和频率虽然不同,但波长不变)。

③ 因光的速度、频率的变化可能导致试验装置中的分光三棱镜对光的选择发生了某种变化,这种变化正好弥补了光速变化所引起的干涉条纹变化。

④ 当采用将干涉装置旋转90°的方式来检测沿地球运动方向与垂直地球运动方向的光线所形成的干涉条纹变化情况时,只需要假设“利用同一个三棱镜分解出的某一光束,在相对于反射镜静止的惯性系中测量时,在不同反射镜上形成的反射光光速等于入射光光速”(这一假设符合完全弹性碰撞理论)就可以解释迈克耳孙-莫雷干涉试验结果。而没有必要一定要假设光速在任何惯性系中恒定不变。

还有其它可能导致本试验不能检测出光的干涉条纹发生变化的可能性。但从以上所列几种情况可以说明:本试验结论并不是只能用光速不变原理才能解释。

2.万有引力对星光运动的影响(星光偏转观测测量)

曾有科学家在日全食时观测到视角离太阳较近的星光发生偏转的情况,并且其偏转量与相对论计算的结果很接近。那么,该观测结果是否只能唯一地用相对论来解释呢?笔者认为不然,如下两种原因都有可能引起试验所观测到的效应。

① 太阳和月球都是由气体包裹着的天体(只是月球的大气层很稀薄而已),当星光透过其大气层时将发生折光现象,因此在地球上观测这类星光时,就会得出星光偏转的观测结果。

② 光(或电磁波)与引力间存在着相互作用,这种作用很微弱,在一般情况下难以发现。但在特殊情况下,如本天文观测中,星光靠近大质量的太阳时,这种相互作用效应才被观测到。

3.高速运动粒子寿命延长

据报道,高速运动的粒子比静止的同类粒子的寿命长得多,且延长的时间与相对论计算结果相近。但笔者认为这并不能证明相对论的正确性。我们可以作一个类似的假想试验,在试验中让两个同样的、运动速度相同的粒子朝相反的方向运动,则按相对论推算,这两个粒子的寿命应延长相同的寿命,即寿命相同。

但我们来考虑另一方面的问题就会发现:假想试验中的两个粒子的寿命不应该相同。因为,无论用经典物理学还是用相对论理论来计算这两个粒子的相对速度V′,其结果都是大于它们中的任意一个相对于静止粒子的速度V的。

按经典物理学计算:

   V′=2 V…………………………………………………………(1)

按相对论理论计算:

   V′=2 V/(1+ V×V/(C×C))………………………………(2)

由于V<C,(1+ V×V/(C×C))<2,因此,V′> V。

根据相对论理论,速度越高、寿命越长。因此,两个运动粒子的寿命时差不仅不能相同,而且应比其与静止粒子间的寿命时差要大一些。这就与前面推论的两个运动粒子的寿命相同发生矛盾。

由以上分析可以看出,相对论所推论的速度越高、寿命越长的结论是存在问题的。高速运动的粒子寿命延长不应该是因运动速度本身引起的,而可能是下述原因引起的:

①试验中观测装置与高速粒子“诞生”、“死亡”时刻所处空间位置间的距离不相等,而观测是利用某种光源发出的光在粒子上的反射或直接测量粒子发出的光(或电磁波)来实现的,光的入射、反射速度不同;所旅行的距离也不同。因此观察到高速粒子的诞生与死亡时刻间的时差也就与观察相对静止的粒子的时差有所不同。如果是这种情况,则高速粒子远离观测装置运动时,会显得寿命延长;而朝观测装置运动时,则寿命会缩短。

②该试验是在地球上完成的,由于到处不在的地球引力以及试验中可能存在的巨大电磁力等的影响,使高速运动的粒子与静止的同类粒子间可能存在差别,特别是运动速度接近光速时,这种差别可能更加显著。如果是这种情况,则高速运动的粒子相对于观测装置的运动方向的改变就不会引起观测结果的变化。

4.引力红移、水星近日点前移和空间弯曲

产生这些现象的本质因素可能是:引力与电磁波间存在相互作用以及引力、电磁波的运动速度为有限等原因所引起的。这些观测结果与广义相对论的推论一般存在5~10%的误差,而观测的天体的运动速度远小于光速的3%,用(0.97~1.03)C代替C代入广义相对论计算式中计算所得值的变化率也在10%以内。因此,这些测量结果也不能排斥光速是可变的。

二、时间、尺规与运动的关系

狭义相对论根据光速不变原理和相对性原理推导出:时间和尺规与运动速度间存在相互关系,即运动速度越快,其时钟行走越慢、尺规越短。这一结论是否客观呢?笔者认为其结论存在严重逻辑问题。

简而言之,宇宙中其它星球相对于地球都存在一绝对值大于零的运动速度,按相对论推算,其它星球上的时钟都应比地球上的行走得慢些、尺规也短些;在其它星球上的智者也可以作类似的推算,也会得出同样的结论。这就出现了一个矛盾:每个星球上的推算者都认为自己所在的星球上的时钟(尺规)是宇宙中走得最快(长度最长)的。这显然不符合逻辑。

为进一步说明这一问题,再作一假想试验:有二架相同型号的高速飞机,各载一台精度相同的时钟和一把长度相等的尺规,在同一时刻、同一地点、以相同的速度朝相反的方向绕地球飞行若干圈后,同时回到起飞地点。按相对论的观点,在地面上的人会认为:两架飞机上的时钟所指示的时刻相同、尺规长度也相同,但比地球上同精度的时钟所指示的时刻慢些、尺规短些;在任一一架飞机上的人会认为:另一架飞机上的时钟所指示的时刻最慢、尺规最短,地面上的时钟、尺规次之,他上面的时钟所指示的时刻最快、尺规最长;在另一架飞机上的人会得出与此相同的结论。因此,时钟所指示的时刻、尺规长度间存在明显的相互矛盾。

三、不同惯性系中光波的运动速度及相关问题

当我们假设光速在与发光源相对静止的惯性系中的运动速度为C时,而在其它惯性系中测量时,其运动速度不再等于C。

为说明这一问题,我们作一假设测量光速试验。有两套运动速度和方向相同(即同在一个惯性系中)的测量装置,它们位于一光源的不同侧(即一个朝光源运动,另一个远离光源运动)。按照古典物理学和我们日常的理解,朝光源运动的装置测得的光速高,远离光源运动的装置测得的光速低。那么,为了使两个装置测量的光速相等,必须使远离光源的装置中的尺变短或时钟变慢;而朝光源运动的装置中的尺变长或时钟变快。

但与我们假设这两套装置在同一惯性系中,该惯性系中应该只有一种尺规长度或时钟速度。从另一方面讲,朝光源运动的测量装置,经过一段时间的运动后,会变为远离光源运动,我们总不能因为这种变化而要求其改变尺规长度和时钟行走速度吧。因此,唯一的选择是:让测得的光的速度不同。

另一方面,光或电磁波运动速度与频率(周期)、波长间存在如下关系:

      V=fλ………………………………(3)

 式中V、f、λ分别为光或电磁波的运动速度、频率、波长。上式在任何惯性系中都是严格成立的。也就是说,在任何惯性系中测量任何运动状态的光或电磁波源发出的光或电磁波的这三个参量,它们都存在以上关系。根据天文观测,远离光源运动时会发生红移(f变小);而朝光源运动时会发生蓝移(f变大)。那么,在上面的两测量光速的装置中,朝光源运动时测得的频率高、远离光源运动时测得的频率低。为保持速度V不变,则前者所测得的波长应变短、后者所测得的波长应变长。

若把光源所发出的光的频率f之倒数(即周期T)、波长λ当作光源所在惯性系中的时间、长度单位时,在上述的测量惯性系中所测得的周期T′、波长λ′就是该惯性系测量光源惯性系的单位时间、长度的量值。但如上所分析,所测得的量值与测量装置与光源间的相对位置有关,而并非为唯一的量值。

 从上面的分析可以发现,要解决狭义相对论存在的逻辑矛盾,只有放弃光速不变原理(或称假设)。那么光的运动到底会遵循什么规律呢?笔者认为,光的运动规律最可能的情况是:在相对于发光体(严格地讲,是在相对于发光原子发光瞬间时的原子核)静止的惯性系中,光的运动速度恒定为C;而在其它惯性系中来测量时,光速就不再恒定为C了,而与测量装置与发光体之间的相对运动速度和运动方向有关。

这样设想,既不会破坏质能转化关系,也不需要寻找一个绝对静止的惯性系。同时,还可以很容易地解释为什么太阳表面不同点的光谱线红移量不同(见“参考文献”2的第57页倒1行),其原因是太阳是一个很大很大的气体球或称作等离子球体,其表面不同点的发光物质相对于地球的运动速度都是不同的,因此测得不同点上的光谱线红移量不同也就很正常了。

四、直接测量光(或电磁波)运动速度的设想

我们知道,银河系以外还存在着许多类似的星系,这些星系中也存在着脉冲星。本设想是欲测量某一特定的河外星系中的一个脉冲星所发出的电磁波的运动速度。这个脉冲星的空间位置应尽可能地位于太阳绕银河系中心运动的轨道平面上且尽可能地位于太阳所在位置的轨道切线上。

找到几个符合条件的脉冲星后,就可以在地球上的适当位置上,建立一个能直接测量脉冲星所发出的电磁波的运动速度的测量站。测量站最好由位于一条直线上的三个测量点组成。这样可利用位于中间测量点上发出标定信号来校核测量系统的计时精度。

如果设测量站S1与S2、S2与S3间的距离为1Km,脉冲星与太阳间的相对运动速度为V0(脉冲星远离太阳系运动时,V0取正值,否则取负值);地球绕太阳运动的速度为V1;地球自转速度暂不考虑,则按照本文的观点计算测量点S1与S2或S2与S3间观测到同一脉冲的时间差的公式如下:

当地球远离脉冲星运动时:

        ΔT12、远=ΔT23、远=1/(C-V0-V1)……………………(4)

 当地球朝脉冲星运动时:

      ΔT12、近=ΔT23、近=1/(C-V0+V1)……………………(5)

式中:ΔT12、远、ΔT23、远为地球远离脉冲星运动时,测量点S1与S2、S2与S3间测量的时差;ΔT12、近、ΔT23、近为地球朝脉冲星运动时,测量点S1与S2、S2与S3间测量的时差。

不同V0时的时差计算值(取V1=30Km/S) 表1

注:表中C为光速,其值等于300000Km/S;μS为时间单位“微秒”。

从表1中可以看出:当能够在地球表面的适当位置上建立这样一个测量站(三个测量点间的直线距离不小于2Km)且当地球位于上述两个特定位置上时,各测量点的计时总精度高于10的-10次方秒时,既使是脉冲星相对太阳的运动速度V0=0,也可以利用这种测量站对河外脉冲星的电磁波运动速度的测量结果来验证或否定相对论关于光速不变的假设。

当用人工方法发射类似的电磁波脉冲,并测量其时差,则该时差应约为:

    ΔT12、人工=ΔT23、人工=1/C≈3.33333(μS)…………………(6)

因此,用人工发射波与河外脉冲星发射波测量的时差比较的话,则既使是脉冲星相对于太阳的运动速度V0=0,也只要求测量站的计时精度高于10的-10次方秒就足够了,若V0的绝对值大于0.25C的话,则计时精度高于10的-6次方秒就足够了。

实际上,还可以通过增大测量站间的直线距离的方式,降低对计时精度的要求。但按本人的了解,目前已有的计时精度完全能够达到要求。因此,该直接检验相对论的方法是完全能够具体实施的。

相对论如何证明

狭义相对论公式及证明
单位 符号 单位 符号
坐标: m (x,y,z) 力: N F(f)
时间: s t(T) 质量:kg m(M)
位移: m r 动量:kg*m/s p(P)
速度: m/s v(u) 能量: J E
加速度: m/s^2 a 冲量:N*s I
长度: m l(L) 动能:J Ek
路程: m s(S) 势能:J Ep
角速度: rad/s ω 力矩:N*m M
角加速度:rad/s^2α 功率:W P
一:
牛顿力学(预备知识)
(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt
(2)a=dv/dt,v=v0+∫adt
(注:两式中左式为微分形式,右式为积分形式)
当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动。
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
(二):质点动力学:
(1)牛一:不受力的物体做匀速直线运动。
(2)牛二:物体加速度与合外力成正比与质量成反比。
F=ma=mdv/dt=dp/dt
(3)牛三:作用力与反作与力等大反向作用在同一直线上。
(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)
动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)
机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2
(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)

二:
狭义相对论力学:(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)
(一)基本原理:(1)相对性原理:所有惯性系都是等价的。
(2)光速不变原理:真空中的光速是与惯性系无关的常数。
(此处先给出公式再给出证明)
(二)洛仑兹坐标变换:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)
(三)速度变换:
V(x)=(v(x)-u)/(1-v(x)u/c^2)
V(y)=v(y)/(γ(1-v(x)u/c^2))
V(z)=v(z)/(γ(1-v(x)u/c^2))
(四)尺缩效应:△L=△l/γ或dL=dl/γ
(五)钟慢效应:△t=γ△τ或dt=dτ/γ
(六)光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)
(光源与探测器在一条直线上运动。)
(七)动量表达式:P=Mv=γmv,即M=γm.
(八)相对论力学基本方程:F=dP/dt
(九)质能方程:E=Mc^2
(十)能量动量关系:E^2=(E0)^2+P^2c^2
(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)

三:
三维证明:
(一)由实验总结出的公理,无法证明。
(二)洛仑兹变换:
设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。可令x=k(X+uT),(1).又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.故有X=k(x-ut),(2).对于y,z,Y,Z皆与速度无关,可得Y=y,(3).Z=z(4).将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x,(5).(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)
(三)速度变换:
V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))
=(dx/dt-u)/(1-(dx/dt)u/c^2)

=(v(x)-u)/(1-v(x)u/c^2)
同理可得V(y),V(z)的表达式。
(四)尺缩效应:
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
(五)钟慢效应:
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.
(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)
(六)光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)
B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b),(1).探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a),(2).相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N),(3).由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b).
(七)动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)
牛二在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛二都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。
牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
(八)相对论力学基本方程:
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛二的形式完全一样,但内涵不一样。(相对论中质量是变量)
(九)质能方程:
Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv
=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2
=Mv^2+Mc^2(1-v^2/c^2)-mc^2
=Mc^2-mc^2
即E=Mc^2=Ek+mc^2
(十)能量动量关系:
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2

四:
四维证明:
(一)公理,无法证明。
(二)坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,dS^2=dx^2+dy^2+dz^2+(icdt)^2,(1).则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2〉0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。
由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)
X=xcosφ+(ict)sinφ
icT=-xsinφ+(ict)cosφ
Y=y
Z=z
当X=0时,x=ut,则0=utcosφ+ictsinφ
得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)
(三)(四)(五)(六)(八)(十)略。
(七)动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)
令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。
则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)
四维动量:P=mV=(γmv,icγm)=(Mv,icM)
四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)
四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)
则f=mdV/dτ=mω
(九)质能方程:
fV=mωV=m(γ^5va+i^2γ^5va)=0
故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)
由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))
故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2
故E=Mc^2=Ek+mc^2
美发射卫星验证相对论
新华社华盛顿4月20日电 经过45年酝酿和开发,耗资7.5亿美元的美国“引力探测器B”卫星,20日下午从加利福尼亚州范登堡空军基地成功升空,它的使命是以前所未有的精度对爱因斯坦1916年提出的广义相对论进行验证。

广义相对论认为,引力是因质量的存在而引起的时空弯曲,引力场的存在会改变时空几何学规则,时间和空间是不可分割的四维整体。与牛顿经典力学理论相比,广义相对论代表着人类时空观的革命。

“引力探测器B”将对广义相对论的两项重要预测进行验证。这两项预测分别被称为“短程线效应”和“惯性系拖曳效应”。
相对论被证实
1881年,美国实验物理学家A.麦克尔逊作了关于上述问题的实验。A.麦克尔逊以高度的准确性测量了光沿着不
同方向传播的速度数值。为了探测预想中的微小差别,A.麦克尔逊使用了非常精确的实验设备,他的实验精确性很
高,他测量出来的速度差别比预想中的差别要小得多。A.麦克尔逊的实验,以后在不同的条件下又作过多次。他的实验得到了出乎预料的结果。在一个运动着的参照
系里,光的传播情形同我们在前面推想的恰恰相反。A.麦克尔逊发现,在地球上,光向任何方向传播,其速度都时
相同的、不变的。在这一意义上,光的传播使我们联想到子弹的飞行。前面我们曾经设想,在一列运动中的火车上,
子弹运动同火车的运动无关。同车厢相对而言,子弹向任何方向运动,其前进速度是相同的。

于是,A.麦克尔逊的实验证明:同我们的推想恰恰相反,光的传播同运动的相对性原理并不矛盾,而是完全符
合运动的相对性原理。这也就是说,我们在前面“运动的相对性原理会被动摇吗”一节中所作的推理是完全错误的。

爱因斯坦提出相对论100周年 带来五大奇妙发现
这个形式简洁优美的理论蕴藏了太多令人惊讶的内容,100年来,人们时时从中悟出宇宙层出不穷的奥秘,直到今天,这里还有很多内容没有被我们悟透。

文/甘信风

相对论的研究对象是超越我们日常经验的高速运动世界和广阔的宇宙,这是我们难以理解相对论的主要原因。

自相对论诞生之日起,它所带来的时空观革命就极大地拓展了人类对宇宙的理解。从相对论中,人们发现了时间旅行的奥秘、原子裂变的巨大能量、宇宙的起源和终结、黑洞和暗能量等奇妙现象。几乎宇宙所有的奥秘都隐藏在相对论那几行简单的公式中。

时间旅行

时间旅行也许意味着可以去修正或改变命运的发展,或是与历史上的风云人物们一起去见证伟大的历史事件;人们当然也有可能去未来旅行,比如去那里了解股市行情,探知科学上的新发现。时间旅行打开了一扇既可以回到过去又可以踏入未来的大门。

如果认为时间旅行仅仅只是一个科幻小说的题材,那就大错特错了,因为相对论的思想表明,时间旅行是可能的。

狭义相对论证明高速旅行会使时间变慢,假定将来的某个时候,人们已解决了所有的技术难题,能够制造一艘以亚光速飞行的宇宙飞船,一定意义上的时间旅行就变成可能了。如果飞船以亚光速从地球出发向遥远的星系飞去,来回的旅程仅仅几年(按飞船上的时间),但在此期间地球上却已过去了几千年,一切都发生了天翻地覆的变化。如果人类文明依然还存在的话,那又会是一个什么新的模样呢?

广义相对论表明,时空可以不是平坦的,而是弯曲的。我们可以在地球与宇宙遥远的地方这两点之间凿出一个虫洞,然后用某种“奇异物质”把洞口撑开,使之成为一个突然出现在宇宙中的超空间管道,让我们在瞬间到达遥远的彼岸。然后当我们返回时,虫洞的奇异性质让我们年轻了很多。

广义相对论判定足够的质量能改变和扭曲时空,数学家法兰克·提普勒据此设想了把时空卷起来的时间旅行方法。他认为,如果太空中的一个巨大物体以一半光速旋转,时空便会扭曲折回。因此,只要将来有人制造一个巨大的圆筒,它的长约为直径的10倍,然后使圆筒以15万公里/秒的速度旋转,便会使圆筒中央附近产生一个扭曲折回的时空。

要将这圆筒当时间机器使用,宇宙飞船一定要开到圆筒的中心沿圆筒内壁盘旋飞行:逆圆筒旋转的方向航行是驶入过去,顺圆筒旋转的方向航行是驶入未来,每盘旋一周都使宇宙飞船更深入过去或未来一些。时间旅行者到达了目的时间,便将飞船驶离圆筒。有一件必须明了的事是,正像所有理论上的时间机器一样,就是驶向过去无论怎样也不能到达比制成圆筒更早的时间。

时间旅行是一个极具幻想色彩、也极具魅力的话题,长期以来,科学家们提出的方案一个又一个,时间旅行可能遇到的问题也被热烈讨论着。总有一天,相对论迷人的光芒会照耀着我们开始真正的时间旅行。

原子裂变

1905年11月,爱因斯坦同样在德国《物理学纪事》杂志上发表了关于狭义相对论的第二篇文章:《物体的惯性同它所包含的能量有关吗?》,这是一篇短文,在这篇论文中,他提出一个物体的质量并不是恒定不变的,而是随着运动速度的增加而增加。这就是运动中物体的“质增效应”。

现在我们想象我们在推一辆小板车,板车很轻,上面什么东西也没有。假设这是一辆在真空中的“理想”板车,没有任何摩擦力、也没有任何阻力,因此,只要我们持续地推它,它的速度就越来越快,但随着时间的推移,它的质量也越来越大,起初像车上堆满了钢铁,然后好像是装着一座喜马拉雅山、再然后好像是装着一个地球、一个太阳系、一个银河系……当小板车接近光速时,好像整个宇宙都装在它上面——它的质量达到无穷大。这时,你无论施加多大力,无论推多长时间,它都不可能运动得再快一些。

由此可见,光子既然以光速传播,它的静止质量就必须等于零,否则它的运动质量就会无穷大。

当物体运动接近光速时,我们不断地对物体施加外力,供给能量,可物体速度的增加越来越困难,我们施加的能量去哪儿了呢?其实能量并没有消失,而是转化为了质量。这就是说,物体质量的增加与动能增加有着密切联系,或者说物体的质量与能量之间有着密切联系。爱因斯坦在说明这种联系的过程中,提出了著名的质能关系式:E=mc2.

能量等于质量乘以光速的平方,即使是在不甚关心其实用价值的纯理论型的物理学家看来也是惊心动魄的,而在绝大多数人眼里,能量等于质量乘以光速的平方,即能量是质量的900万倍,是多么诱人的前景呀!指甲盖般大小的物质的质量如果完全消失,其释放的能量是用以万吨煤炭来计算的。

遗憾的是,没人能随便减少质量,譬如一块石头,我们尽可以用锤子砸成小块,然后碾成碎末,可是当你仔细地收集这些碎末后就会发现它的质量并未变化。

但是,十几年后的1939年,约里奥·居里、费米、西拉德这三位科学家分别独立发现了链式反应,使人类找到了释放巨大原子能的方法。铀235的核收到中子轰击就会发生裂变,分裂成两个中等质量的新原子核,放出1~3个中子,并释放出巨大能量,这些中子又能引发其它铀核再分裂,如此反复,形成连锁反应,不断释放巨大能量。这就是链式反应。

链式反应使原子能成为杀伤力巨大的新武器。仅仅在几年后,人类第一颗原子弹在美国爆炸成功,紧接着日本人遭受了人类历史上最残酷的惩罚,几十万人死伤,其中一部分人瞬间还被原成基本粒子,真成了魂飞魄散。E=mc2在给人间带来希望之前,带来的先是致命的创伤,这一切对于深爱和平的爱因斯坦来说无疑是一记重拳,直至临死前他仍为此痛心不已。

宇宙大爆炸

令我们这些当代人感到惊诧的是,迟至1917年,那些人类最具智慧的大脑仍然以为我们的银河系就是整个宇宙,而这个银河系大小的宇宙永远都是稳定不变的,既不会变大也不会变小,这就是流传了千百年的稳恒态宇宙观。

1917年,爱因斯坦试图根据广义相对论方程推导出整个宇宙的模型,但他发现,在这样一个只有引力作用的模型中,宇宙不是膨胀就是收缩。为了使这个宇宙模型保持静止,爱因斯坦在他的方程里额外增加了一个新的概念——宇宙常数,它表示的是一种斥力,同引力相反,它随着天体之间距离的增大而增强。这是一个假想的、用以抵消引力作用的力。

然而,爱因斯坦很快发现自己错了。因为科学家们很快发现,宇宙实际上是膨胀的!

最早观察到这一点的是20世纪的天文学之父哈勃。哈勃1889年出生于美国的密苏里州,毕业于芝加哥大学天文系。1929年,哈勃发现所有星系都在远离我们而去,这表明宇宙正在不断膨胀。这种膨胀是一种全空间的均匀膨胀,因此,在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大。

宇宙的膨胀意味着,在早先,星体相互之间更加靠近,并且在更遥远过去的某一刻,它们似乎在同一个很小的范围内。

宇宙膨胀的消息传到著名物理学家伽莫夫那里去的时候,立即引起了这位学者的兴趣。乔治·伽莫夫出生于俄国,自小对诗歌、几何学和物理学都深感兴趣,在大学时期成为物理学家弗里德曼的得意门生。弗里德曼曾在爱因斯坦之后提出了重要的宇宙膨胀模型,伽莫夫也成为宇宙膨胀理论的热心支持人之一。1945年,人类史上第一颗原子弹爆炸成功,看着蘑菇云升起的照片,伽莫夫突发灵感:把原子弹规模“放大”到无穷大,不就成了宇宙爆炸吗?他把核物理知识和宇宙膨胀理论结合起来,逐渐形成了自己的一套大爆炸宇宙理论体系。

1948年,伽莫夫和他的学生阿尔法合写了一篇著名论文,系统地提出了宇宙起源和演化的理论。与我们惯常的想法不同,这个创生宇宙的大爆炸不是发生在一个确定的点,然后向四周的空气传播开去的那种爆炸,而是空间本身在扩展,星系物质随着空间的扩展而分开。

根据大爆炸宇宙论,极早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀着。伽莫夫还作出了一个非凡的预言:我们的宇宙仍沐浴在早期高温宇宙的残余辐射中,不过温度已降到6K左右。正如一个火炉虽然不再有火了,还可以冒一点热气。

1964年,美国贝尔电话公司年轻的工程师——彭齐亚斯和威尔逊,因一次偶然的机会发现了伽莫夫所预言的早期宇宙的残余辐射,经过测量和计算,得出这个残余辐射的温度是2.7K(比伽莫夫预言的温度要低),一般称为3K宇宙微波背景辐射。这一发现有力的佐证了宇宙大爆炸理论。

广义相对论的智慧之处就在于,它从诞生起就能描述整个完整的宇宙,即使那些未知的领域也被全部囊括进去。让它对付像太阳系这样小小的、很普通的时空领域可真是大材小用了。

宇宙常数死而复生——暗能量

在发现了宇宙膨胀这个事实后,爱因斯坦就急急忙忙把他方程中的宇宙常数项去掉了,并认为宇宙常数是他“一生中最大的错误”。随后,宇宙常数被抛进历史的垃圾堆。

然而造化弄人,几十年后,宇宙常数又像鬼魂般的复活了。这次宇宙常数的复活要归因于暗能量的发现。

1998年,天文学家们发现,宇宙不只是在膨胀,而且在以前所未有的加速度向外扩张,所有遥远的星系远离我们的速度越来越快。那么一定有某种隐藏的力量在暗中把星系相互以加速膨胀的方式撕扯开来,这是一种具有排斥力的能量,科学家们把它称为“暗能量”。近年来,科学家们通过各种的观测和计算证实,暗能量不仅存在,而且在宇宙中占主导地位,它的总量约达到宇宙总量的73%,而宇宙中的暗物质约占23%、普通物质仅约占4%.我们一直以为满天繁星就已经够多了,宇宙中还有什么能比得上它们呢?而现在,我们才发现这满天繁星却是“弱势群体”,剩下的绝大部分都是我们知之甚少或干脆一无所知的,这怎么不让人感到惊心动魄呢!

事实上,早在1930年,就有天体物理学家指出,爱因斯坦那加入了宇宙常数的宇宙学方程并不能导出完全静态的宇宙:因为引力和宇宙常数是不稳定的平衡,一个小小的扰动就能导致宇宙失控的膨胀和收缩。而暗能量的发现告诉我们,爱因斯坦那作为与引力相抗衡的宇宙常数不仅确确实实存在,而且大大扰动了我们的宇宙,使宇宙的膨胀速率严重失控。在经历了一系列曲折后,宇宙常数正在时间中复活。

宇宙常数今日以暗能量的面目出现在世人面前,它所产生的汹涌澎湃的排斥力已令整个宇宙为之变色!暗能量和引力之间的角力战自宇宙诞生起就没有停止过,在这场漫长的战斗中,最举足轻重的就是彼此的密度。物质的密度随着宇宙膨胀导致的空间增大而递减;但暗能量的密度在宇宙膨胀时,变化得非常缓慢,或者根本保持不变。在很久以前,物质的密度是较大的,因此那时的宇宙是处于减速膨胀的阶段;现今的暗能量密度已经大于物质的密度,排斥力已经从引力手中彻底夺得了控制权,以前所未有的速度推动宇宙膨胀。根据一些科学家的预测,再过200多亿年,宇宙将迎来动荡的末日,恐怖的暗能量终将把所有的星系、恒星、行星一一撕裂,宇宙将只剩下没有尽头的寒冷、黑暗。

暗能量的发现,也充分地体现了人类认知过程又走进了一个“悖论怪圈”:即宇宙中所占比例最多的,反而是最迟也是最难为我们所知晓的。一方面人类现在对宇宙奥秘的了解越来越多,另一方面我们所要面对的未知也越来越多。而这日益深远的未知又反过来不断刺激着人类去探索宇宙背后的真相。

暗能量是怎么来的?它将如何发展?这已经是21世纪宇宙学所面临的最重大问题之一。

黑洞大发现

广义相对论表明,引力场可以造成空间弯曲,强大的引力场可以造成强烈的空间弯曲,那么无限强大的引力场会产生什么情况呢?

1916年爱因斯坦发表广义相对论后不久,德国物理学家卡尔·史瓦西就用这个理论描绘了一个假设的完全球状星体附近的空间和时间是如何弯曲的。他证明,假如星体质量聚集到一个足够小的球状区域里,比如一个天体的质量与太阳相同,而半径只有3公里时,引力的强烈挤压会使那个天体的密度无限增大,然后产生灾难性的坍塌,使那里的时空变得无限弯曲,在这样的时空中,连光都不能逃逸!由于没有了光信号的联系,这个时空就与外面的时空分割成两个性质不同的区域,那个分割球面就是视界。

这就是我们今天耳熟能详的黑洞,但在那个年代,几乎没有人相信有这么奇怪的天体存在,甚至包括爱因斯坦本人和爱丁顿这样的相对论大师也明确表示反对这种怪物,爱因斯坦还说他可以证明没有任何星体可以达到密度无限大。就连黑洞这个名称也是一直到1967年才由美国物理学家惠勒命名。

历史当然不会因此而停止前进,时间进入20世纪30年代,美国天文学家钱德拉塞卡提出了著名的“钱德拉塞卡极限”,即:一颗恒星当其氢核燃尽后的质量是太阳质量的 1.44倍以上时,将不可能变成白矮星,而会继续坍塌收缩,变成体积比白矮星更小、密度比白矮星更大的星体,即中子星。1939年,美国物理学家奥本海默进一步证明,一颗恒星当其氢核燃尽后的质量是太阳质量的3倍以上时,其自身引力的作用将能使光线都不能逃出这个星体的范围。

随着经验的积累,关于黑洞的理论变得成熟起来,人们从彻底拒绝这个怪物到渐渐相信它,到20世纪60年代,人们已普遍接受黑洞的概念,黑洞的奥秘被逐渐研究出来。

严格而言,黑洞并不是通常意义下的“星”, 而只是空间的一个区域。这是与我们日常宇宙空间互不连通的区域,黑洞视界将这两个区域隔绝开,在视界以外,可以由光信号在任意距离上相互联系,这就是我们所居住的正常宇宙;而在视界以内,光线并不能自由地从一个地方传播到另一个地方,而是都朝向中心集聚,事件之间的联系受到严格限制,这就是黑洞。

在黑洞的内部,物体向黑洞坠落的过程中,潮汐力越来越大,在中心区域,引力和起潮力都是无限大。因此,在黑洞中心,除了质量、电荷和角动量以外,物质其他特性全部丧失,原子、分子等等都将不复存在!在这种情形下,无法谈论黑洞的哪一部分物质,黑洞是一个统一体!

在黑洞中心,全部物质被极为紧密地挤压成为一个体积无限趋近于零的几何点,任何强大的力量都不可能把它们分开,这就是所谓的“奇点”状态。广义相对论无法对此进行考察,而必须代之以新的正确理论——量子理论。讽刺的是,广义相对论给我们导出了一个黑洞,却在黑洞的奇点之处失效,量子理论取而代之,而量子理论和相对论却根本互不相容!
我倒,你cope这么多做什么啊 ,到目前的科学水平只能说明相对论是没错的,想要对的话,你可以努力啊。
靠,这么简单的问题都还拿出来问
我们要是都能解答这问题,爱因斯坦还有得混吗?算了,为了给他老人家留点面子,我就当作不会吧
本文标题: 相对论如何进行验证
本文地址: http://www.lzmy123.com/jingdianwenzhang/257086.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    太原王氏为何没有被列入四大侨望为何世界各民族的历史都有音乐的存在
    Top