烹饪、铸造时鼓风从而提高温度的原理是什么

发布时间: 2022-10-25 12:01:41 来源: 励志妙语 栏目: 经典文章 点击: 102

钢铁是怎样炼成的起因经过结果。急需求求了在所有的金属材料中,钢铁是人类最早使用的金属之一。早在三千年前,人类已经会开采铁矿,并且...

烹饪、铸造时鼓风从而提高温度的原理是什么

钢铁是怎样炼成的起因经过结果。急需求求了

在所有的金属材料中,钢铁是人类最早使用的金属之一。早在三千年前,人类已经会开采铁矿,并且发明了炼铁的方法。我国也是早期发明炼铁的国家之一。
古代人民炼铁用的原料是铁矿石,因它的颜色是红棕色的,古代人民把它叫做红棕色的石头。古代人民虽然不懂得炼铁的化学原理,但他们知道炼铁需要很高的温度。当时炼铁用的燃料是木材和木炭,到了汉代开始用煤。当时炼铁用的炉子非常简单,炉身一般是用石头和粘土砌成的,呈圆筒形,在炉旁有一个风箱。最初是用人或马来拉动风箱的,到了汉代发明了水排,才利用水力来鼓风,以提高炉内的燃烧温度。
在炼铁时,把铁矿石和木炭一层间一层地从炉子上面加进去。生火后,用风箱把空气压送到炉子里去,木炭就旺盛地燃烧起来,产生很高的温度。这时铁矿石熔化,三氧化二铁被木炭燃烧时生成的一氧化碳还原,还原出来的铁在 1200℃~1300℃的高温下熔化成铁水,从炉腰间的一个小孔流出,这样就炼出了生铁。我们的祖先在当时已经掌握了完全合乎现代科学原理的炼铁技术。
钢铁是一个庞大的集团,其应用之广、产量之大,都无愧于金属世界的冠军。各种机器、农具、汽车、火车、坦克以及许多日常生活用品的制造,都离不开钢铁。
钢铁是铁与钢的总称,实际上,铁矿石在高炉中经过冶炼得到的生铁,在炼钢炉中经过进一步冶炼,才得到钢。
在炼铁厂里,有个高达 100 多米,容积达 4000 多立方米的庞然大物就是赫赫有名的炼铁高炉。它的外形像一个大圆筒,中间大,两头稍小。炉身的外面包着钢壳,里面砌有耐火砖。高炉每昼夜要吞进上千吨的铁矿石、焦炭和石灰石等原料。这么多的原料,要举到几十层楼高的高炉炉顶上放进炉内,可不是一件易事。不过,在现代化的炼铁厂里,装料操作完全是机械化和自动化的。从矿山来的一列列火车。装载着铁矿石和石灰石;从炼焦厂来的运焦车,装载着一罐罐的焦炭,它们由自动给料器送入料车,满载原料的料车,由输送轨道跑到炉顶。料车到达炉顶后自动地下料,将原料送入炉内。接着,空车再沿轨道跑下来,并且当高炉缺料时,料车就会自己跑上来送料。炼铁原料装入高炉以后,慢慢地不断由上向下移动。炉身内径逐渐向下扩大是为了便于炉料向下移动,使它们容易跟上升的气体接触。炉子下部的焦炭遇到了鼓入的热空气,就跟空气里的氧气化合,生成二氧化碳。二氧化碳气体上升,被炽热的焦炭还原成一氧化碳。
C + O2高温CO2↑
CO2 + C高温2CO↑
生成的一氧化碳再向上升,遇到铁矿石的时候就跟三氧化二铁起还原反应:
Fe2O3 + 3CO高温2Fe + 3CO2↑
在炼铁过程中除了铁被还原出以外,锰、硅、磷等元素也分别从它们的氧化物里还原出来。在高炉内径最大的部分,还原出来的铁开始跟碳、锰、硅、磷、硫等元素熔合在一起。因此,由高炉炼出来的不是纯铁,而是含有1.7%以上的碳和少量锰、硅、磷、硫等杂质的铁碳合金,这种合金就是生铁。
加入石灰石是为了除去铁矿石中所含的极难熔化的脉石(主要成分是SiO2)。石灰石加热到 800℃左右开始分解成氧化钙和二氧化碳:
CaCO3 高温CaO + CO2↑
生成的二氧化碳随气流上升,氧化钙跟脉石里的二氧化硅化合生成熔化状态的硅酸钙炉渣。
CaO + SiO2=CaSiO3
这样就把难熔的脉石熔化成炉渣而便于除去了,所以我们把石灰石叫做熔剂。
熔化的生铁和炉渣生成后,炉料的体积逐渐缩小,高炉下部的内径也逐渐随着缩小。每隔一定时间,出铁口和出渣口交替打开出渣出铁。当出铁口一打开,其景象极为壮观,刹那间只见红热的铁水飞奔流出,闪着太阳般的光辉,溅起灿烂的铁花。铁就这样在烈火中诞生了。从高炉中炼出了生铁,不直接使用,大部分还要送去炼钢。这主要是因为生铁的性能欠佳,不能满足多方面的需要。生铁硬而脆,耐磨性虽好,但韧性很差,不易加工、铸造,不易焊接,生铁的用途往往只限于制造机床床身、外壳、底座及火炉、铁锅等,连小小的指甲刀也无法用生铁来制造。钢没有生铁那些缺点,它具有良好的韧性、塑性和焊接性,可以锻打、压延、抽丝,易于进行机械加工,钢的用途十分广泛。
生铁与钢的主要成分都是铁,但性能有显著不同。这主要是由于生铁中含碳量偏高,并含有一些不适量的硅、锰、硫、磷等杂质造成的。通常把含碳量高于 2%的叫生铁,含碳量在 0.03%~ 2%的叫钢,含碳量低于 0.03%的就是热铁。
由生铁炼成钢主要就是降低含碳量并把硅、锰、硫、磷的含量调到适当的范围。工人师傅常把这个过程简单地概括为:降碳、调硅锰、去硫磷。当然,降碳不会是无限制地降,去硫磷也达不到彻底清除的地步。
从炼钢的化学原理来看,跟炼铁的过程恰好相反。炼铁是将氧化铁还原为铁的过程;炼钢则是将生铁中的杂质氧化而除去的过程。那么炼钢时用什么作氧化剂呢?现代采用的氧气顶吹转炉炼钢法,用的是纯氧气。在炼钢过程中,生铁中各元素的氧化都是直接或间接跟氧作用,但是它们不是同时被氧化的。谁先和氧作用,谁后和氧作用,主要决定于它们跟氧结合的能力。铁元素跟氧结合的能力虽然较低,但是铁水里铁的含量远远大于其他元素,所以吹炼时部分铁先被氧化成氧化亚铁,同时放出大量的热。
2Fe + O2 = 2FeO + 热
硅和锰也不甘落后,接着他们从 FeO 中夺取氧而被氧化。
Si + 2FeO = SiO2 + 2Fe + 热
Mn + FeO = MnO + Fe + 热
硅和锰在钢水中非常活跃,它们也会跑去直接跟氧化合。
Si + O2 = SiO2 + 热
2Mn + O2 = 2MnO + 热
生成的 SiO2 和 MnO 跟生石灰(CaO)结合而进入炉渣。
SiO2 + CaO = CaSiO3 ↓
当硅和锰的氧化接近结束时,反应放出大量的热使炉温迅速上升。当炉中钢水的平均温度超过 1500℃时,碳大大地活跃起来,这时它跟氧结合的能力超过了硅、锰与氧的结合能力,因而碳被迅速氧化。
C+FeO=CO+Fe
处于活跃状态的碳在钢水中跑来跑去,它也跑去直接跟氧化合。
2C + O2 = 2CO↑
生成的一氧化碳气体随炉气逸出。一氧化碳上升时对钢水起搅拌作用,使钢水剧烈地沸腾,这样就能使反应加速。所以除去生铁中的部分碳是炼钢中的一个非常重要的环节。
降了碳,调整了硅、锰的含量,下面就是去掉硫和磷了。为什么要除掉硫和磷呢?因为硫和磷是两种有害的杂质元素。硫的存在会使钢产生“热脆性”,即钢在热加工时发生断裂现象。磷的危害则相反,它使钢产生“冷脆性”。磷的“冷脆性”曾是世界上几起疑案的“主犯”。
1938 年 3 月 14 日,比利时的哈塞尔特城被包围在寒冷的气氛中,温度低达零下 15 度。刺骨的寒风吹到人的脸上如针扎一般疼痛,只有阿尔伯运河的水在欢快地、不知疲倦地流淌着,不时地弹奏出那轻柔悠扬的乐曲。横跨在运河上的阿尔伯钢桥,显得格外雄伟、壮丽,就像是哈塞尔特忠诚的卫士,突然,从桥下传来了惊天动地的金属断裂声,紧接着是桥身剧裂抖动,桥面出现了裂缝。人们惊恐万状,人和车辆争先向桥的两侧奔去……,在不到几分钟的时间内,钢桥折成了几段,坠入河中。无巧不成书。时隔十六年,也就是 1954 年寒冬腊月的一天,爱尔兰海面上寒风凛冽,一艘三万两千吨级的英国油轮——“世界协和号”乘风破浪地航行在广阔的海面上。忽然,有个水手气喘嘘嘘地向船长报告:“船长先生,快去看吧,油轮的中部出现了裂缝!”话音未落,一阵刺耳的巨响击破长空,油轮顿时一分为二,许多水手纷纷跳进大海。就这样,油轮上的人还没有来得及用无线电发出求援信号,就和油轮一起葬身波涛汹涌的大海中。谁是这两起重大事故的肇事者呢?科学家经过深入的研究后宣布:罪魁祸首是钢铁中的磷!钢铁中磷的含量如果过大,遇冷就会变脆。这两起恶性事故的发生,就是因为钢铁受冻而造成的。因此,在炼钢时要加入造渣剂氧化钙,目的是为了除去铁水中所含磷、硫两种元素。
在铁水中疏以 FeS 的形式存在,它跟生石灰作用,生成硫化钙而进入炉渣:
FeS + CaO = FeO + CaS
去磷的总化学方程式是:
2P +5FeO + 3CaO = 5Fe + Ca3(PO4)2
生成的磷酸钙也进入炉渣。
炼钢生成的炉渣比钢水轻,它浮在钢水表面上,可以跟钢水分开。
氧化和造渣过程完成后,还会有未反应的氧化亚铁存在,最后还要加入脱氧剂,以除去氧化亚铁,并同时调整硅、锰的含量。若生产某种合金钢,在最后阶段还要加入适量的某种金属,经化验钢样合格时,即可出钢。
炼钢的方法有多种。有平炉炼钢,电炉炼钢法。氧气顶吹转炉炼钢法,是 50 年代建立并发展起来的新方法。这种方法用纯氧吹炼而不用空气,炉温高、反应快,一炉钢的吹炼时间只需十几分钟,因而,这种方法发展很快。
有的国家氧气顶吹转炉炼钢的产量,达到了总产量的 90%以上。
一块不起眼的铁矿石经过了高炉的冶炼,除掉了杂质,成为坚硬无比的
钢铁,成为在工农业生产、日常生活中具有最广泛用途的金属材料,这是多
么伟大的功绩。

密烘铸造法主要有那些缺点和优点,相对价格怎么样?

最近看见"MIHANITE"指的应该是密烘铸造法把,它的出处和制作工艺谁能帮我解答下,谢谢!!
战国以后,由于冶铁技术的进步,社会经济制度的变革,社会上对于铁器需要量的增加,铁矿的开采,铁的冶炼和铸造成为关系国计民生的重要手工业,因此,冶铁业开始发展起来。在战国时代开发的铁矿已经不少,战国时代的著作《山海经·五藏山经》所载产铁之山就有37处,记录属南阳的就有“帝�NF9A5�之山 ‘其阴多铁’”,约在今河南省泌阳县和南阳县之间;另一处即“兔床之山,‘其阳多铁’”,约在今嵩县和南阳县之间。战国时代各国都有冶铁手工业,其中韩、楚两国的冶铁手工业最为发达,著名的冶铁手工业地点也最多,当时的南阳已经成为战国时代闻名的冶铁中心。《荀子·议兵篇》记载:“宛钜铁(钅也),惨如蜂虿。”至秦汉时期,铁器和冶铁技术在广大地区已经得到了广泛的传播和使用。从考古中发现,西汉初年铁制农具和工具已取代了铜、骨、石、木器,到西汉中期,随着冶铁技术的发展,锻铁工具增多,铁兵器也逐步占据了主要地位,直至东汉,主要的兵器全部为钢铁所制,从而完成了兵器和生产工具的铁器化进程。�西汉初年,冶铁业可听任商人经营。魏国的孔氏原经营冶铁业,秦灭魏后,被强行迁到南阳,靠冶铁成为巨富。西汉武帝时,武帝任用南阳的大冶铁商孔仅为“大农丞,领盐、铁事”,管理全国的盐铁业,南阳成为全国设立铁官的手工业基地之一。在南阳瓦房庄发掘的汉代冶铁遗址中,就曾发现西汉时期的冶铁遗物(熔炉基、耐火砖、鼓风管、铸造用的模具及铁器,包括铁犁铧、铁耧铧、铁锸、锛、斧等)。至东汉,南阳的冶铁业在西汉基础上,冶铁作坊数量增多,规模空前扩大,技术显著提高。建国后在南阳附近发现的冶铁遗址就有:南阳市北关瓦房庄铸铁作坊遗址,桐柏张陂村的大张陂冶铁遗址,桐柏县铁炉村遗址,南召县太山庙、草店冶铁遗址,方城县赵河村冶铁遗址,镇平县安国城铁范、铁铸件遗址,西峡县白石尖冶铁石等。1959~1960年南阳市北关瓦房庄发掘的汉代冶铁遗址,主要遗址面积达2800m�2,发现了大量的冶铁遗迹和遗物,其中熔炉9座,炒钢炉8座,锻炉1座。发现在当时的生产条件下冶铁过程中使用了热鼓风炉,这是我国早期使用的节约热能的熔炉。铸造使用的模和范近40种。由文物考古发掘的遗物可见,在当时南阳已经成为全国的冶铸中心。

二、 冶铁技术、工艺的发展

冶铁技术在秦汉时期得到进一步的发展。高炉炼铁已成为一种经济而有效的炼铁方法。高炉炼铁从上边装料,下部鼓风,形成炉料下降和煤气上升的相对运动。燃料产生的高温煤气穿过料层上升,把热量传给炉料,其中所含一氧化碳同时对氧化铁起还原作用。这样燃料的热能和化学能同时得到比较充分的利用,下层的炉料被逐渐还原以至熔化,上层的炉料便从炉顶徐徐下降,燃料被预热而能达到更高的燃烧温度。这确是一种比较合理的冶炼方法,因而具有强大的生命力而长期流传。其冶炼水平的发展表现在以下几个方面:

�第一,高炉炼铁中的筑炉技术达到了较高的水平。有的用含三氧化硅较高的黄色或红色耐火粘土烧成的长方形或弧形的耐火砖砌筑。南阳瓦房庄遗址出土的耐火砖,在不同部位耐火砖所用的材料、厚度、形状均不相同。有的用直径0.3~0.5cm的白色石英砂粒并掺有少量的细砂。有的用草拌泥、黄粘土及大量的石英砂混合而成,所用石英砂不仅有天然的,而且还有经过加工破碎的。这些耐火砖耐火强度达到1463℃~1469℃之间,这显然是耐火土中掺入了含有二氧化硅相当高的砂石的结果。这种含二氧化硅相当高的酸性耐火材料,从我国古代高炉所出大都是酸性炉渣来看,是合适的。

�第二,高炉炼铁所用原料大部分已进行了加工。冶炼工人从长期的实践经验中发现,炉料的粒度整齐可以减少对煤气的阻力。因此,在冶炼之前,就要对原料进行加工,在桐柏县张畈村遗址中,曾挖出数以千吨计的矿石粉末,说明当时已十分注意对矿石的加工。

� 除了高炉炼铁外,在西汉时期还发现有坩埚炼铁技术。南阳市北关瓦房庄遗址中,就发现坩埚炼炉17座,其中3座较完整,都近似长方形。其中一座长3.6米,宽1.82米,深度残存0.82米。炉的建筑方法是,就地面挖出长方坑,留下炉门,周壁经过夯打后再涂薄泥一层。炉顶用弧形的耐火砖砌成,砖的大小不同,砖的内面敷有一层厚约1厘米的耐火泥,泥的表面还留有很薄的灰白色岩浆,砖的背面涂有较厚(约5厘米)的草拌泥。有一部分是用土坯和草拌泥券成。炉由门、池、窑膛、烟囱四部分组成。门在炉的最前端,当是用来装炉和通风的,左右两壁都经火烧,已成砖灰色。池在门内,周壁也烧成砖灰色,池底留有厚约1厘米的细砂,当是用作燃烧时的“风窝”的。炉膛为长方形,周壁糊有草拌泥,火烧较轻,当是盛放成行排列的坩埚和木柴、木炭等燃料的,炉的后部设有3个烟囱,当是排出炉烟用的。有的炉内填满木柴灰,有的炉底堆有很多烧土块和砖瓦碎片。发现坩埚3件,都是椭圆形的圜底陶罐,罐外敷有草拌泥厚约3~4厘米,泥的内部烧成红砖色,表面则成光亮的深黑色,并存有一层灰白色光亮岩浆。另在一坩埚的内壁还粘有铁渣的碎块。从炼炉的结构以及流传到后世的坩埚炼铁法,可以推知当时的炼铁方法是:先用碎块矿石和木炭以及助溶剂混合配好,装入坩埚,装炉前,先在炉底铺上一层适当数量的砖瓦碎片,使炉底通风;并留出许多“火口”放进易燃物,以便点火,接着就铺上一层木炭,在木炭上安装成行坩埚;然后在这层坩埚之上再铺上一层木炭,在木炭上再安装成行坩埚,待炉装满,便可以从“火口”点火,并加以鼓风,使坩埚中矿石还原溶化成生铁。�第三,鼓风技术的发展。高炉炼铁和冶铁技术的发展,与鼓风技术的改进是分不开的。我国古代炼铁高炉是用皮制的“橐”作为鼓风器的。随着时间的推移以及经验的积累,人们逐步改变了鼓风的方法。在大型的冶炼炉中不止有一个鼓风器,而是增加鼓风器和鼓风管,使得炉中燃料充分燃烧,提高炉子的温度,加速冶炼的进程。在瓦房庄的冶铁遗址中,有大量的鼓风管出土,其中有一部分带有弯头的陶制鼓风管,粗端内径约 100mm,细端内径为50mm,长约400mm。由于陶胎鼓风管下测泥层被烧琉,经测定,其烧琉温度当为1250℃~1280℃之间。从此温度及挖掘出的实物可判断,汉代南阳冶铁炉装有热鼓风装置(《南阳汉代冶铁》,中州古籍出版社,1995年12月,第23页。)。这种装置利用炉口余热把风管内冷风变成热风鼓进熔炉,既提高了熔炉温度,又缩短了冶炼时间,提高了铁水质量。就鼓风动力而言,出现了“人排”鼓风动力,畜力鼓风,如“马排”、“牛排”等。东汉建武七年(31),杜诗任南阳太守,创造了用水力鼓风的“水排”,并进行了推广。利用水排鼓风,铸造农具,比用人力鼓风要“用力少,见功多”,并取得良好的效果。现今发掘的桐柏县张畈村的冶铁遗址距矿山较远,而是建在河流旁,很可能就是利用“水排”来鼓风的缘故。水排的发明和应用,不仅提高了鼓风能力,而且大大降低了成本,因而长期被冶铁工业所沿用。像这样以水为动力的鼓风机械,欧州在1100多年后才出现。�

鼓风技术的改进,促进了冶铁技术的发展。除了冶铸生铁技术的快速发展之外,还创造了铸铁柔化工艺,出现了灰口铸铁及球墨铸铁。在南阳市北关瓦房庄汉代冶铁遗址出土的铁器中,经分析检验,可以看到汉代的农具主要采用可锻铸铁。在其中检验的12件农具中,有9件是可锻铸铁,2件是铸铁脱碳钢,1件是白口铁。这表明在铸铁中已经采用了柔化技术。从质量上看,当时的铸铁柔化技术已相当稳定。在瓦房庄冶铁遗址的东汉地层中出土的135号铁钁,它的石墨组织虽不是出自铸态,而是在高温退火时形成的,但形状规则接近球状,边缘也很光滑,从而提高了工件的机械性能。

三、 炒钢、铸铁脱碳钢及铸造技术

为了适应社会对钢铁制品的需要,到西汉后期已创造了“炒钢”技术。这种技术把生铁加热到熔化或基本熔化的状态下加以炒炼,使铁脱碳成钢或熟铁。�

在南阳市方城县赵河村汉代冶铁遗址中也曾发现与巩县铁生沟汉代冶铁遗址中相同的炉型6座。这种炒铁炉容积小,呈缶形,温度可以集中;挖入地下成为地炉,散热少,有利于温度升高;炉下部作“缶底”状,是为了便于装料搅拌。此外,在南阳市北关瓦房庄冶铁遗址中也发现几座炒钢炉,形制和构筑方法大同小异,炉底还有铁块。从这个遗址发掘内容看,南阳瓦房庄的冶铁作坊中,不仅铸造铁器,而且还用生铁炒钢或熟铁,以此锻制工具和其他构件。在此遗址中还出土有凿、钁等,当是该作坊自制的凿、钁等。通过考古资料证明,到东汉时期,炒钢技术已很普及。南阳东郊曾出土一件东汉铁刀,形制较特殊,类似炊事用刀,刀身有一道平行于刃部的锻接痕迹,刀宽11�2厘米,长约17厘米,刀背厚约0�5厘米,保存较完好,是用炒钢锻制而成(河南省博物馆等:《河南汉代冶铁技术初探》,《考古学报》1978年第1期。)。�

西汉后期已经创造了简便的炒钢炉,将生铁炒炼成熟铁或钢的技术发展,标志着炼钢技术
发展到了一个新的阶段,使得钢材的产量大大提高,这对于当时生产工具的改进,钢制品的
推广均具有重要的意义。

古代炼钢以含碳量低的块炼铁或熟铁为原料,采用渗碳的方法炼制成钢(现在仍然使用此法)
,一种即以含碳量高的生铁为原料,在固体状态下脱碳制钢。战国时代已经采用了柔化处理工艺,将生铁进行脱碳退火,得到了脱碳不完全的铸铁脱碳钢件(李众:《中国封建社会前期钢铁冶炼技术发展的探讨》,《考古学报》,1975年第2期。),至汉代仍然使用这一工艺。如,南阳瓦房庄冶铁遗址所出土的铁斧,中心是白口组织,表层是钢的成份。类似这样的铁器在其他遗址里也有发现。它们都是用白口铁坯件,在氧化气氛下退火,使外层脱碳,由表及里依次成为纯铁素体、亚共析、共析组织,由于脱碳不完全,内部仍然是铁,实际上是一种由钢和铁组成的复合材料。另一种情况是脱碳比较完全,已全部清除白口组织,但内层析出部分石墨。如南阳瓦房庄出土的一件铁凿,从外形看是铸件,表面金相分析是钢的组织,很容易误认为是钢铸件。在汉代当时的技术条件下,没有高于1500℃的高温和相应的耐火材料,是不可能出现液态铸钢的。南阳瓦房庄出土的另一件铁凿,经检验,基体为过共析钢,内层残留石墨,证明它是经脱碳而成的钢质工具。另外,在南阳瓦房庄冶铁遗址中还有成形的薄铁板出土,这些铁板实际是经过脱碳热处理的已成为含碳较低的钢板,可以锻打成器,实际上是创造了一种新的制钢工艺。这样就扩大了生铁的使用范围,增加了优质钢材的来源,对于钢铁生产有重大的作用。�

铸铁的热处理技术在汉代有很大的发展,并臻于成熟。在南阳瓦房庄冶铁遗址中所发掘的9件
农具,经检验8件为黑心韧性铸铁,质量良好,有一些与现代黑心韧性铸铁已无大的差别。还有一部分白心韧性铸铁,白心韧性铸铁可制作耐冲击、性能良好的手工工具,黑心韧性铸铁可制作耐磨的农具。在铸制的铁器中有一部分铁锸、铁耧铧、铁钁即为白心韧性铸铁。�

从发现的汉代冶铁遗址来看,当时的作坊有以炼铁为主而兼铸铁器的,也有专门铸造铁器的
。而最初的铁铸件,是由炼铁炉的铁水直接浇铸。在汉代,出现了专门的化铁炉,这对于提高熔铁的质量,获得优质铸件,有很大的好处。从南阳瓦房庄遗址看,化铁炉的结构和筑炉材料与炼铁炉有明显的区别,说明当时的炼铁与化铁的分工已很明确。�

南阳瓦房庄冶铁遗址出土化铁炉7座,它的构筑方法是:在平整的地面上,铺筑直径约2.6m、厚50mm的草拌泥,烧成橙黄色,作为炉基。炉底是空心的,由整体基底、束腰式支柱、周壁与
炉缸底部组成。基底约厚45mm,用羼有大量大颗粒砂的耐火粘土铺成,砂的粒度在10mm左右。周壁和支柱的筑炉材料与基底稍有不同。羼有大量小颗粒砂。周壁厚40~50mm,支柱直径70~120mm,高70cm,根据遗址所出土的长方形耐火砖的尺寸来估算,支柱可能有15个左右,基上砌筑炉缸底部。�

炉体全用弧形耐火砖建造,从砖的内表面不同的熔融程度看,炉体可分为3个区域:炉口及其下三、四层砖(砖长36cm,宽17cm,厚6~9cm不等),炉衬略现熔融,有许多龟裂纹道,温度最低,为预热区。炉体中部的三、四层砖,炉衬均有烧琉,说明温度较高,应是还原区。再往下三、四层砖,炉衬普遍烧琉,甚至全部流下,露出砖体,这里温度最高,当是靠近风口的氧化区。依照耐火砖的高度及上述炉壁烧琉情况来推算,化铁炉的炉体高度约为3~4m。

� 化铁炉的炉壁分3层,弧形耐火砖是特制的成形砖块,外敷草拌泥,厚约15~50mm,内搪炉衬,厚约40mm。根据出土时较完整的14块耐火砖的弧度来看,化铁炉最小外径为1.16m,内径为0.92m,最大外径为2.3m,内径为2.14m,其平均内径有1.5m左右。经鉴定,耐火砖均有砂粒和粘土配制,从石英砂的颗粒组成看,有浑圆状的和棱角状的白石英和少量长石,说明除天然砂外,已使用了人工破碎的砂粒。石英颗粒有裂纹出现,玻璃相中析出针状莫来石晶体,有流动结构,均说明当时化铁炉能够达到相当高的温度。�从遗址中出土的大量鼓风管的情况推测,化铁时有可能已试用换热式热风装置,有一种陶质鼓风管,外敷厚约45mm的草拌泥,下层泥料表层烧熔下滴,靠近拐角处的泥料熔融顺角流下,据测定温度,烧琉温度当在1250℃~1280℃之间。风管的这种烧琉状态,有一种解释认为,它可能是架设在炉顶上,作为预热管道使用的。�

此外,在出土的大量碎铁块和熔渣中,有不少梯形铁板和铧、锸、锛、钁、锄、斧等铁器残片(厚度约40~70mm)。这些遗物可能是化铁炉所用原料,方形的铁砧和铁锤,既是锻造工具,又是用来破碎原料的工具。大量的木炭渣表明所用燃料为木炭,炉中残留木炭凝块,有的与表面微熔的铁块凝结在一起,某些器形尚能辨认。由这种现象推测可能是分层装料的结果。从出土的炉衬看,断面明显分成三层,至少已经过两次停炉和补炉,补炉的材料与耐火砖所用材料相同。根据出土的遗物推测,对于这样大的熔炉,当是半连续操作的,每过一定时间,出一次铁水,浇注一批铸范。当熔炼过久或铸范已毕需适时停炉。这说明汉代工匠已很好地掌握了熔炉的操作程序。汉代铸造技术,在战国时代铸造铁器和铜器的技术上又有所发展。这时铸造所用的范有泥范、陶范和铁范,特别是铁范的使用,使铸造铁器的质量及效率均有不同程度的提高。从南阳瓦房庄发掘出的各种模及范来看,其工艺过程大致如下:制模工人就地选取黄粘土,羼入35%左右的细砂,加水调泥,制成模版,然后精工细雕地挖模面,按照严格的尺寸要求,塑制不同模面上的各个部位的形体。模面制妥后,涂上涂料凉干,这是首先的必要的制模工序。在浇铸之前,先合模,糊加固泥,再将铸模送入窑中烘烤,到一定温度之后停烘出窑,乘热浇铸铁汁,在浇注时将浇口、冒口注满铁汁,以适应模腔收缩的需要。待铁汁在模腔中凝固到一定程度之后,打开加固泥,脱去泥模,再打掉浇口铁,即可获得铁质的铸范。然后把铸出的铁上范、铁下范进行合范,再将铁范芯插入范腔中,并用某种铁工具将铁范捆扎夹固,以免浇注时铁汁的热涨作用而开裂。合范后,也可能入窑烘烤,乘热浇注铁汁,待铁汁凝固到一定程度之后,打开铁范,并打掉浇口、冒口铁,便获得产品。�铸造技术方法的发展还表现在叠铸技术方面。叠铸技术就是把许多范片或范块层层叠合起来,用统一的直浇道,一次浇铸出多个铸件。这种方法在战国时已经发明(梓溪:《谈几种古器物的范》,《文物参考资料》1957年8期。),它主要适用于小型铸件的大量生产。到汉代叠铸技术又有了进一步发展,如河南温县发掘的一处汉代烘范窑,出土有500多套叠铸范,有16种铸件,36种规格,一套范有4~14层不等,每层有1~6个铸件,最多的一次可铸84件,这样就大大提高了生产效率。南阳瓦房庄冶铁遗址出土有几件叠堆微熔遗物和三至五个“V”字形铁犁铧套叠遗物等,充分证明南阳是最早采用双堆叠铸技术的冶铁大郡。�铸范的设计也相当科学,范腔之间的泥层很薄,为使范面紧凑尽可能减少吃泥量,有些范的直浇口制成扁圆形,合范用的榫卯定位结构也按此原则予以布置。范的外形与范腔相吻合,不少铸范削去角部,使边厚尽可能一致,不但可以减少范的体积和用泥量,而且使散热更加均匀,提高铸件质量。�范芯的制造,除自带泥芯外,形状简单的用泥条捺入芯座内。复杂的,如车(车口)泥芯,用泥质对开式芯盒制成。南阳瓦房庄发现的东汉时期多堆式叠铸(车口)范,范块采用对开式垂直分型面,两堆铸范共用一个直浇道,使金属实收率更高,浇注时间更少,说明叠铸技术有了进一步的发展。

铁矿冶炼 生铁

请问哪位对炼铁矿了解啊,炼铁矿的方法有哪些?
编辑本段炼铁  liàntiě   [ironsmelting] 将金属铁从含铁矿物(主要为铁的氧化物)中提炼出来的工艺过程,主要有高炉法,直接还原法,熔融还原法,等离子法。   高炉炼铁是指把铁矿石和焦炭,一氧化碳,氢气等燃料及熔剂(从理论上说把活动性比铁的金属和矿石混合后高温也可炼出铁来)装入高炉中冶炼,去掉杂质而得到金属铁(生铁)。   其反应式为:   Fe2O3+3CO==2Fe+3CO2(高温)   Fe3O4+2CO==3Fe+2CO2(高温)   C+O2==CO2(高温)   C+CO2==2CO(高温)   元素个数右下标。 编辑本段高炉炼铁原理简介:  高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 编辑本段高炉炼铁流程  高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。 高炉冶炼工艺--炉前操作:  一、炉前操作的任务   1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口,放出渣、铁,并经渣铁沟分别流人渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。   2.完成渣、铁口和各种炉前专用设备的维护工作。   3、制作和修补撇渣器、出铁主沟及渣、铁沟。   4、更换风、渣口等冷却设备及清理渣铁运输线等一系列与出渣出铁相关的工作。   高炉基本操作制度:    高炉炉况稳定顺行:一般是指炉内的炉料下降与煤气流上升均匀,炉温稳定充沛,生铁合格,高产低耗。   操作制度:根据高炉具体条件(如高炉炉型、设备水平、原料条件、生产计划及品种指标要求)制定的高炉操作准则。   高炉基本操作制度:装料制度、送风制度、炉缸热制度和造渣制度。 [高炉设备]高炉 :  横断面为圆形的炼铁竖炉。用钢板作炉壳,壳内砌耐火砖内衬。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹 、炉缸5部分。由于高炉炼铁技 术经济指标良好,工艺 简单 ,生产量大,劳动生产效率高,能耗低等优点,故这种方法生产的铁占世界铁总产量的绝大部分。高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中未还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。高炉冶炼的主要产品是生铁 ,还有副产品高炉渣和高炉煤气。 [高炉设备]高炉热风炉介绍 :  热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 [高炉设备]铁水罐车:  铁水罐车用于运送铁水,实现铁水在脱硫跨与加料跨之间的转移或放置在混铁炉下,用于高炉或混铁炉等出铁。 编辑本段炼铁生产安全技术  1.炼铁安全生产的主要特点   炼铁是将铁矿石或烧结球团矿、锰矿石、石灰石和焦炭按一定比例予以混匀送至料仓,然后再送至高炉,从高炉下部吹入1000℃左右的热风,使焦炭燃烧产生大量的高温还原气体煤气,从而加热炉料并使其发生化学反应。在1100℃左右铁矿石开始软化,1400℃熔化形成铁水与液体渣,分层存于炉缸。之后,进行出铁、出渣作业。   炼铁生产所需的原料、燃料,生产的产品与副产品的性质,以及生产的环境条件,给炼铁人员带来了一系列潜在的职业危害。例如,在矿石与焦炭运输、装卸,破碎与筛分,烧结矿整粒与筛分过程中,都会产生大量的粉尘;在高炉炉前出铁场,设备、设施、管道布置密集,作业种类多,人员较集中,危险有害因素最为集中,如炉前作业的高温辐射,出铁、出渣会产生大量的烟尘,铁水、熔渣遇水会发生爆炸;开铁口机、起重机造成的伤害等;炼铁厂煤气泄漏可致人中毒,高炉煤气与空气混合可发生爆炸,其爆炸威力很大;喷吹烟煤粉可发生粉尘爆炸;另外,还有炼铁区的噪声,以及机具、车辆的伤害等。如此众多的危险因素,威胁着生产人员的生命安全和身体健康。   2.炼铁生产的主要安全技术   1)高炉装料系统安全技术   装料系统是按高炉冶炼要求的料坯,持续不断的给高炉冶炼。装料系统包括原料燃料的运人、储存、放料、输送以及炉顶装料等环节。装料系统应尽可能的减少装卸与运输环节,提高机械化、自动化水平,使之安全的运行。   (1)运人、储存与放料系统。大中型高炉的原料和燃料大多数采用胶带机运输,比火车运输易于自动化和治理粉尘。储矿槽未铺设隔栅或隔栅不全,周围没有栏杆,人行走时有掉入槽的危险;料槽形状不当,存有死角,需要人工清理;内衬磨损,进行维修时的劳动条件差;料闸门失灵常用人工捅料,如料突然崩落往往造成伤害。放料时的粉尘浓度很大,尤其是采用胶带机加振动筛筛分料时,作业环境更差。因此,储矿槽的结构应是永久性的、十分坚固的。各个槽的形状应该做到自动顺利下料,槽的倾角不应该小于50°,以消除人工捅料的现象。金属矿槽应安装振动器。钢筋混凝土结构,内壁应铺设耐磨衬板;存放热烧结矿的内衬板应是耐热的。矿槽上必须设置隔栅,周围设栏杆,并保持完好。料槽应设料位指示器,卸料口应选用开关灵活的阀门,最好采用液压闸门。对于放料系统应采用完全封闭的除尘设施。   (2)原料输送系统。大多数高炉采用料车斜桥上料法,料车必须设有两个相对方向的出入口,并设有防水防尘措施。一侧应设有符合要求的通往炉顶的人行梯。卸料口卸料方向必须与胶带机的运转方向一致,机上应设有防跑偏、打滑装置。胶带机在运转时容易伤人,所以必须在停机后,方可进行检修、加油和清扫工作。   (3)顶炉装料系统。通常采用钟式向高炉装料。钟式装料以大钟为中心,有大钟、料斗、大小钟开闭驱动设备、探尺、旋转布料等装置组成。采用高压操作必须设置均压排压装置。做好各装置之间的密封,特别是高压操作时,密封不良不仅使装置的部件受到煤气冲刷,缩短使用寿命,甚至会出现大钟掉到炉内的事故。料钟的开闭必须遵守安全程序。为此,有关设备之间必须连锁,以防止人为的失误。   2)供水与供电安全技术   高炉是连续生产的高温冶炼炉,不允许发生中途停水、停电事故。特别是大、中型高炉必须采取可靠的措施,保证安全供电、供水。   (1)供水系统安全技术。高炉炉体、风口、炉底、外壳、水渣等必须连续给水,一旦中断便会烧坏冷却设备,发生停产的重大事故。为了安全供水,大中型高炉应采取以下措施:供水系统设有一定数量的备用泵;所有泵站均设有两路电源;设置供水的水塔,以保证柴油泵启动时供水;设置回水槽,保证在没有外部供水情况下维持循环供水;在炉体、风口供水管上设连续式过滤器;供、排水采用钢管以防破裂。   (2)供电安全技术。不能停电的仪器设备,万一发生停电时,应考虑人身及设备安全,设置必要的保安应急措施。设置专用、备用的柴油机发电组。   计算机、仪表电源、事故电源和通讯信号均为保安负荷,各电器室和运转室应配紧急照明用的带铬电池荧光灯。   3)煤粉喷吹系统安全技术   高炉煤粉喷吹系统最大的危险是可能发生爆炸与火灾。   为了保证煤粉能吹进高炉又不致使热风倒吹入喷吹系统,应视高炉风口压力确定喷吹罐压力。混合器与煤粉输送管线之间应设置逆止阀和自动切断阀。喷煤风口的支管上应安装逆止阀,由于煤粉极细,停止喷吹时,喷吹罐内、储煤罐内的储煤时间不能超过8~12h。煤粉流速必须大于18m/s。罐体内壁应圆滑,曲线过渡,管道应避免有直角弯。   4)高炉安全操作技术   (1)开炉的操作技术。开炉工作极为重要,处理不当极易发生事故。开炉前应做好如下工作:进行设备检查,并联合检查;做好原料和燃料的准备;制定烘炉曲线,并严格执行;保证准确计算和配料。   (2)停炉的操作技术。停炉过程中,煤气的一氧化碳浓度和温度逐渐增高,再加上停炉时喷入炉内水分的分解使煤气中氢浓度增加。为防止煤气爆炸事故,应做好如下工作:处理煤气系统,以保证该系统蒸气畅通;严防向炉内漏水。在停炉前,切断已损坏的冷却设备的供水,更换损坏的风渣口;利用打水控制炉顶温度在400℃~500℃之间;停炉过程中要保证炉况正常,严禁休风;大水喷头必须设在大钟下。设在大钟上时,严禁开关大钟。   5)高炉维护安全技术   高炉生产是连续进行的,任何非计划休风都属于事故。因此,应加强设备的检修工作,尽量缩短休风时间,保证高炉正常生产。   为防止煤气中毒与爆炸应注意以下几点:   (1)在一、二类煤气作业前必须通知煤气防护站的人员,并要求至少有2人以上进行作业。在一类煤气作业前还须进行空气中一氧化碳含量的检验,并佩带氧气呼吸器。   (2)在煤气管道上动火时,须先取得动火票,并做好防范措施。   (3)进入容器作业时,应首先检查空气中一氧化碳的浓度,作业时,除要求通风良好外,还要求容器外有专人进行监护。   3.炼铁生产事故的预防措施和技术   炼铁厂煤气中毒事故危害最为严重,死亡人员多,多发生在炉前和检修作业中。预防煤气中毒的主要措施是提高设备的完好率,尽量减少煤气泄漏;在易发生煤气泄漏的场所安装煤气报警器;进行煤气作业时,煤气作业人员佩带便携式煤气报警器,并派专人监护。   炉前还容易发生烫伤事故,主要预防措施是提高装备水平,作业人员要穿戴防护服。原料场、炉前还容易发生车辆伤害和机具伤害事故。   烟煤粉尘制备、喷吹系统,当烟煤的挥发分超过10%时,可发生粉尘爆炸事故。为了预防粉尘爆炸,主要采取控制磨煤机的温度、控制磨煤机和收粉器中空气的氧含量等措施。目前,我国多采用喷吹混合煤的方法来降低挥发分的含量。 编辑本段炼铁生产事故的预防措施  1、炼铁厂煤气中毒事故危害最为严重,死亡人员多,多发生在炉前和检修作业中。预防煤气中毒的主要措施是提高设备的完好率,尽量减少煤气泄漏;   2、在易发生煤气泄漏的场所安装煤气报警器;   3、进行煤气作业时,煤气作业人员佩带便携式煤气报警器,并派专人监护。   4、炉前还容易发生烫伤事故,主要预防措施是提高装备水平,作业人员要穿戴防护服。原料场、炉前还容易发生车辆伤害和机具伤害事故。   5、烟煤粉尘制备、喷吹系统,当烟煤的挥发分超过10%时,可发生粉尘爆炸事故。为了预防粉尘爆炸,主要采取控制磨煤机的温度、控制磨煤机和收粉器中空气的氧含量等措施。目前,我国多采用喷吹混合煤的方法来降低挥发分的含量。
一、 生产工具的铁器化与冶铁业的发展

战国以后,由于冶铁技术的进步,社会经济制度的变革,社会上对于铁器需要量的增加,铁矿的开采,铁的冶炼和铸造成为关系国计民生的重要手工业,因此,冶铁业开始发展起来。在战国时代开发的铁矿已经不少,战国时代的著作《山海经·五藏山经》所载产铁之山就有37处,记录属南阳的就有“帝�NF9A5�之山 ‘其阴多铁’”,约在今河南省泌阳县和南阳县之间;另一处即“兔床之山,‘其阳多铁’”,约在今嵩县和南阳县之间。战国时代各国都有冶铁手工业,其中韩、楚两国的冶铁手工业最为发达,著名的冶铁手工业地点也最多,当时的南阳已经成为战国时代闻名的冶铁中心。《荀子·议兵篇》记载:“宛钜铁(钅也),惨如蜂虿。”至秦汉时期,铁器和冶铁技术在广大地区已经得到了广泛的传播和使用。从考古中发现,西汉初年铁制农具和工具已取代了铜、骨、石、木器,到西汉中期,随着冶铁技术的发展,锻铁工具增多,铁兵器也逐步占据了主要地位,直至东汉,主要的兵器全部为钢铁所制,从而完成了兵器和生产工具的铁器化进程。�西汉初年,冶铁业可听任商人经营。魏国的孔氏原经营冶铁业,秦灭魏后,被强行迁到南阳,靠冶铁成为巨富。西汉武帝时,武帝任用南阳的大冶铁商孔仅为“大农丞,领盐、铁事”,管理全国的盐铁业,南阳成为全国设立铁官的手工业基地之一。在南阳瓦房庄发掘的汉代冶铁遗址中,就曾发现西汉时期的冶铁遗物(熔炉基、耐火砖、鼓风管、铸造用的模具及铁器,包括铁犁铧、铁耧铧、铁锸、锛、斧等)。至东汉,南阳的冶铁业在西汉基础上,冶铁作坊数量增多,规模空前扩大,技术显著提高。建国后在南阳附近发现的冶铁遗址就有:南阳市北关瓦房庄铸铁作坊遗址,桐柏张陂村的大张陂冶铁遗址,桐柏县铁炉村遗址,南召县太山庙、草店冶铁遗址,方城县赵河村冶铁遗址,镇平县安国城铁范、铁铸件遗址,西峡县白石尖冶铁石等。1959~1960年南阳市北关瓦房庄发掘的汉代冶铁遗址,主要遗址面积达2800m�2,发现了大量的冶铁遗迹和遗物,其中熔炉9座,炒钢炉8座,锻炉1座。发现在当时的生产条件下冶铁过程中使用了热鼓风炉,这是我国早期使用的节约热能的熔炉。铸造使用的模和范近40种。由文物考古发掘的遗物可见,在当时南阳已经成为全国的冶铸中心。

二、 冶铁技术、工艺的发展

冶铁技术在秦汉时期得到进一步的发展。高炉炼铁已成为一种经济而有效的炼铁方法。高炉炼铁从上边装料,下部鼓风,形成炉料下降和煤气上升的相对运动。燃料产生的高温煤气穿过料层上升,把热量传给炉料,其中所含一氧化碳同时对氧化铁起还原作用。这样燃料的热能和化学能同时得到比较充分的利用,下层的炉料被逐渐还原以至熔化,上层的炉料便从炉顶徐徐下降,燃料被预热而能达到更高的燃烧温度。这确是一种比较合理的冶炼方法,因而具有强大的生命力而长期流传。其冶炼水平的发展表现在以下几个方面:

�第一,高炉炼铁中的筑炉技术达到了较高的水平。有的用含三氧化硅较高的黄色或红色耐火粘土烧成的长方形或弧形的耐火砖砌筑。南阳瓦房庄遗址出土的耐火砖,在不同部位耐火砖所用的材料、厚度、形状均不相同。有的用直径0.3~0.5cm的白色石英砂粒并掺有少量的细砂。有的用草拌泥、黄粘土及大量的石英砂混合而成,所用石英砂不仅有天然的,而且还有经过加工破碎的。这些耐火砖耐火强度达到1463℃~1469℃之间,这显然是耐火土中掺入了含有二氧化硅相当高的砂石的结果。这种含二氧化硅相当高的酸性耐火材料,从我国古代高炉所出大都是酸性炉渣来看,是合适的。

�第二,高炉炼铁所用原料大部分已进行了加工。冶炼工人从长期的实践经验中发现,炉料的粒度整齐可以减少对煤气的阻力。因此,在冶炼之前,就要对原料进行加工,在桐柏县张畈村遗址中,曾挖出数以千吨计的矿石粉末,说明当时已十分注意对矿石的加工。

� 除了高炉炼铁外,在西汉时期还发现有坩埚炼铁技术。南阳市北关瓦房庄遗址中,就发现坩埚炼炉17座,其中3座较完整,都近似长方形。其中一座长3.6米,宽1.82米,深度残存0.82米。炉的建筑方法是,就地面挖出长方坑,留下炉门,周壁经过夯打后再涂薄泥一层。炉顶用弧形的耐火砖砌成,砖的大小不同,砖的内面敷有一层厚约1厘米的耐火泥,泥的表面还留有很薄的灰白色岩浆,砖的背面涂有较厚(约5厘米)的草拌泥。有一部分是用土坯和草拌泥券成。炉由门、池、窑膛、烟囱四部分组成。门在炉的最前端,当是用来装炉和通风的,左右两壁都经火烧,已成砖灰色。池在门内,周壁也烧成砖灰色,池底留有厚约1厘米的细砂,当是用作燃烧时的“风窝”的。炉膛为长方形,周壁糊有草拌泥,火烧较轻,当是盛放成行排列的坩埚和木柴、木炭等燃料的,炉的后部设有3个烟囱,当是排出炉烟用的。有的炉内填满木柴灰,有的炉底堆有很多烧土块和砖瓦碎片。发现坩埚3件,都是椭圆形的圜底陶罐,罐外敷有草拌泥厚约3~4厘米,泥的内部烧成红砖色,表面则成光亮的深黑色,并存有一层灰白色光亮岩浆。另在一坩埚的内壁还粘有铁渣的碎块。从炼炉的结构以及流传到后世的坩埚炼铁法,可以推知当时的炼铁方法是:先用碎块矿石和木炭以及助溶剂混合配好,装入坩埚,装炉前,先在炉底铺上一层适当数量的砖瓦碎片,使炉底通风;并留出许多“火口”放进易燃物,以便点火,接着就铺上一层木炭,在木炭上安装成行坩埚;然后在这层坩埚之上再铺上一层木炭,在木炭上再安装成行坩埚,待炉装满,便可以从“火口”点火,并加以鼓风,使坩埚中矿石还原溶化成生铁。�第三,鼓风技术的发展。高炉炼铁和冶铁技术的发展,与鼓风技术的改进是分不开的。我国古代炼铁高炉是用皮制的“橐”作为鼓风器的。随着时间的推移以及经验的积累,人们逐步改变了鼓风的方法。在大型的冶炼炉中不止有一个鼓风器,而是增加鼓风器和鼓风管,使得炉中燃料充分燃烧,提高炉子的温度,加速冶炼的进程。在瓦房庄的冶铁遗址中,有大量的鼓风管出土,其中有一部分带有弯头的陶制鼓风管,粗端内径约 100mm,细端内径为50mm,长约400mm。由于陶胎鼓风管下测泥层被烧琉,经测定,其烧琉温度当为1250℃~1280℃之间。从此温度及挖掘出的实物可判断,汉代南阳冶铁炉装有热鼓风装置(《南阳汉代冶铁》,中州古籍出版社,1995年12月,第23页。)。这种装置利用炉口余热把风管内冷风变成热风鼓进熔炉,既提高了熔炉温度,又缩短了冶炼时间,提高了铁水质量。就鼓风动力而言,出现了“人排”鼓风动力,畜力鼓风,如“马排”、“牛排”等。东汉建武七年(31),杜诗任南阳太守,创造了用水力鼓风的“水排”,并进行了推广。利用水排鼓风,铸造农具,比用人力鼓风要“用力少,见功多”,并取得良好的效果。现今发掘的桐柏县张畈村的冶铁遗址距矿山较远,而是建在河流旁,很可能就是利用“水排”来鼓风的缘故。水排的发明和应用,不仅提高了鼓风能力,而且大大降低了成本,因而长期被冶铁工业所沿用。像这样以水为动力的鼓风机械,欧州在1100多年后才出现。�

鼓风技术的改进,促进了冶铁技术的发展。除了冶铸生铁技术的快速发展之外,还创造了铸铁柔化工艺,出现了灰口铸铁及球墨铸铁。在南阳市北关瓦房庄汉代冶铁遗址出土的铁器中,经分析检验,可以看到汉代的农具主要采用可锻铸铁。在其中检验的12件农具中,有9件是可锻铸铁,2件是铸铁脱碳钢,1件是白口铁。这表明在铸铁中已经采用了柔化技术。从质量上看,当时的铸铁柔化技术已相当稳定。在瓦房庄冶铁遗址的东汉地层中出土的135号铁钁,它的石墨组织虽不是出自铸态,而是在高温退火时形成的,但形状规则接近球状,边缘也很光滑,从而提高了工件的机械性能。

三、 炒钢、铸铁脱碳钢及铸造技术

为了适应社会对钢铁制品的需要,到西汉后期已创造了“炒钢”技术。这种技术把生铁加热到熔化或基本熔化的状态下加以炒炼,使铁脱碳成钢或熟铁。�

在南阳市方城县赵河村汉代冶铁遗址中也曾发现与巩县铁生沟汉代冶铁遗址中相同的炉型6座。这种炒铁炉容积小,呈缶形,温度可以集中;挖入地下成为地炉,散热少,有利于温度升高;炉下部作“缶底”状,是为了便于装料搅拌。此外,在南阳市北关瓦房庄冶铁遗址中也发现几座炒钢炉,形制和构筑方法大同小异,炉底还有铁块。从这个遗址发掘内容看,南阳瓦房庄的冶铁作坊中,不仅铸造铁器,而且还用生铁炒钢或熟铁,以此锻制工具和其他构件。在此遗址中还出土有凿、钁等,当是该作坊自制的凿、钁等。通过考古资料证明,到东汉时期,炒钢技术已很普及。南阳东郊曾出土一件东汉铁刀,形制较特殊,类似炊事用刀,刀身有一道平行于刃部的锻接痕迹,刀宽11�2厘米,长约17厘米,刀背厚约0�5厘米,保存较完好,是用炒钢锻制而成(河南省博物馆等:《河南汉代冶铁技术初探》,《考古学报》1978年第1期。)。�

西汉后期已经创造了简便的炒钢炉,将生铁炒炼成熟铁或钢的技术发展,标志着炼钢技术
发展到了一个新的阶段,使得钢材的产量大大提高,这对于当时生产工具的改进,钢制品的
推广均具有重要的意义。

古代炼钢以含碳量低的块炼铁或熟铁为原料,采用渗碳的方法炼制成钢(现在仍然使用此法)
,一种即以含碳量高的生铁为原料,在固体状态下脱碳制钢。战国时代已经采用了柔化处理工艺,将生铁进行脱碳退火,得到了脱碳不完全的铸铁脱碳钢件(李众:《中国封建社会前期钢铁冶炼技术发展的探讨》,《考古学报》,1975年第2期。),至汉代仍然使用这一工艺。如,南阳瓦房庄冶铁遗址所出土的铁斧,中心是白口组织,表层是钢的成份。类似这样的铁器在其他遗址里也有发现。它们都是用白口铁坯件,在氧化气氛下退火,使外层脱碳,由表及里依次成为纯铁素体、亚共析、共析组织,由于脱碳不完全,内部仍然是铁,实际上是一种由钢和铁组成的复合材料。另一种情况是脱碳比较完全,已全部清除白口组织,但内层析出部分石墨。如南阳瓦房庄出土的一件铁凿,从外形看是铸件,表面金相分析是钢的组织,很容易误认为是钢铸件。在汉代当时的技术条件下,没有高于1500℃的高温和相应的耐火材料,是不可能出现液态铸钢的。南阳瓦房庄出土的另一件铁凿,经检验,基体为过共析钢,内层残留石墨,证明它是经脱碳而成的钢质工具。另外,在南阳瓦房庄冶铁遗址中还有成形的薄铁板出土,这些铁板实际是经过脱碳热处理的已成为含碳较低的钢板,可以锻打成器,实际上是创造了一种新的制钢工艺。这样就扩大了生铁的使用范围,增加了优质钢材的来源,对于钢铁生产有重大的作用。�

铸铁的热处理技术在汉代有很大的发展,并臻于成熟。在南阳瓦房庄冶铁遗址中所发掘的9件
农具,经检验8件为黑心韧性铸铁,质量良好,有一些与现代黑心韧性铸铁已无大的差别。还有一部分白心韧性铸铁,白心韧性铸铁可制作耐冲击、性能良好的手工工具,黑心韧性铸铁可制作耐磨的农具。在铸制的铁器中有一部分铁锸、铁耧铧、铁钁即为白心韧性铸铁。�

从发现的汉代冶铁遗址来看,当时的作坊有以炼铁为主而兼铸铁器的,也有专门铸造铁器的
。而最初的铁铸件,是由炼铁炉的铁水直接浇铸。在汉代,出现了专门的化铁炉,这对于提高熔铁的质量,获得优质铸件,有很大的好处。从南阳瓦房庄遗址看,化铁炉的结构和筑炉材料与炼铁炉有明显的区别,说明当时的炼铁与化铁的分工已很明确。�

南阳瓦房庄冶铁遗址出土化铁炉7座,它的构筑方法是:在平整的地面上,铺筑直径约2.6m、厚50mm的草拌泥,烧成橙黄色,作为炉基。炉底是空心的,由整体基底、束腰式支柱、周壁与
炉缸底部组成。基底约厚45mm,用羼有大量大颗粒砂的耐火粘土铺成,砂的粒度在10mm左右。周壁和支柱的筑炉材料与基底稍有不同。羼有大量小颗粒砂。周壁厚40~50mm,支柱直径70~120mm,高70cm,根据遗址所出土的长方形耐火砖的尺寸来估算,支柱可能有15个左右,基上砌筑炉缸底部。�

炉体全用弧形耐火砖建造,从砖的内表面不同的熔融程度看,炉体可分为3个区域:炉口及其下三、四层砖(砖长36cm,宽17cm,厚6~9cm不等),炉衬略现熔融,有许多龟裂纹道,温度最低,为预热区。炉体中部的三、四层砖,炉衬均有烧琉,说明温度较高,应是还原区。再往下三、四层砖,炉衬普遍烧琉,甚至全部流下,露出砖体,这里温度最高,当是靠近风口的氧化区。依照耐火砖的高度及上述炉壁烧琉情况来推算,化铁炉的炉体高度约为3~4m。

� 化铁炉的炉壁分3层,弧形耐火砖是特制的成形砖块,外敷草拌泥,厚约15~50mm,内搪炉衬,厚约40mm。根据出土时较完整的14块耐火砖的弧度来看,化铁炉最小外径为1.16m,内径为0.92m,最大外径为2.3m,内径为2.14m,其平均内径有1.5m左右。经鉴定,耐火砖均有砂粒和粘土配制,从石英砂的颗粒组成看,有浑圆状的和棱角状的白石英和少量长石,说明除天然砂外,已使用了人工破碎的砂粒。石英颗粒有裂纹出现,玻璃相中析出针状莫来石晶体,有流动结构,均说明当时化铁炉能够达到相当高的温度。�从遗址中出土的大量鼓风管的情况推测,化铁时有可能已试用换热式热风装置,有一种陶质鼓风管,外敷厚约45mm的草拌泥,下层泥料表层烧熔下滴,靠近拐角处的泥料熔融顺角流下,据测定温度,烧琉温度当在1250℃~1280℃之间。风管的这种烧琉状态,有一种解释认为,它可能是架设在炉顶上,作为预热管道使用的。�

此外,在出土的大量碎铁块和熔渣中,有不少梯形铁板和铧、锸、锛、钁、锄、斧等铁器残片(厚度约40~70mm)。这些遗物可能是化铁炉所用原料,方形的铁砧和铁锤,既是锻造工具,又是用来破碎原料的工具。大量的木炭渣表明所用燃料为木炭,炉中残留木炭凝块,有的与表面微熔的铁块凝结在一起,某些器形尚能辨认。由这种现象推测可能是分层装料的结果。从出土的炉衬看,断面明显分成三层,至少已经过两次停炉和补炉,补炉的材料与耐火砖所用材料相同。根据出土的遗物推测,对于这样大的熔炉,当是半连续操作的,每过一定时间,出一次铁水,浇注一批铸范。当熔炼过久或铸范已毕需适时停炉。这说明汉代工匠已很好地掌握了熔炉的操作程序。汉代铸造技术,在战国时代铸造铁器和铜器的技术上又有所发展。这时铸造所用的范有泥范、陶范和铁范,特别是铁范的使用,使铸造铁器的质量及效率均有不同程度的提高。从南阳瓦房庄发掘出的各种模及范来看,其工艺过程大致如下:制模工人就地选取黄粘土,羼入35%左右的细砂,加水调泥,制成模版,然后精工细雕地挖模面,按照严格的尺寸要求,塑制不同模面上的各个部位的形体。模面制妥后,涂上涂料凉干,这是首先的必要的制模工序。在浇铸之前,先合模,糊加固泥,再将铸模送入窑中烘烤,到一定温度之后停烘出窑,乘热浇铸铁汁,在浇注时将浇口、冒口注满铁汁,以适应模腔收缩的需要。待铁汁在模腔中凝固到一定程度之后,打开加固泥,脱去泥模,再打掉浇口铁,即可获得铁质的铸范。然后把铸出的铁上范、铁下范进行合范,再将铁范芯插入范腔中,并用某种铁工具将铁范捆扎夹固,以免浇注时铁汁的热涨作用而开裂。合范后,也可能入窑烘烤,乘热浇注铁汁,待铁汁凝固到一定程度之后,打开铁范,并打掉浇口、冒口铁,便获得产品。�铸造技术方法的发展还表现在叠铸技术方面。叠铸技术就是把许多范片或范块层层叠合起来,用统一的直浇道,一次浇铸出多个铸件。这种方法在战国时已经发明(梓溪:《谈几种古器物的范》,《文物参考资料》1957年8期。),它主要适用于小型铸件的大量生产。到汉代叠铸技术又有了进一步发展,如河南温县发掘的一处汉代烘范窑,出土有500多套叠铸范,有16种铸件,36种规格,一套范有4~14层不等,每层有1~6个铸件,最多的一次可铸84件,这样就大大提高了生产效率。南阳瓦房庄冶铁遗址出土有几件叠堆微熔遗物和三至五个“V”字形铁犁铧套叠遗物等,充分证明南阳是最早采用双堆叠铸技术的冶铁大郡。�铸范的设计也相当科学,范腔之间的泥层很薄,为使范面紧凑尽可能减少吃泥量,有些范的直浇口制成扁圆形,合范用的榫卯定位结构也按此原则予以布置。范的外形与范腔相吻合,不少铸范削去角部,使边厚尽可能一致,不但可以减少范的体积和用泥量,而且使散热更加均匀,提高铸件质量。�范芯的制造,除自带泥芯外,形状简单的用泥条捺入芯座内。复杂的,如车(车口)泥芯,用泥质对开式芯盒制成。南阳瓦房庄发现的东汉时期多堆式叠铸(车口)范,范块采用对开式垂直分型面,两堆铸范共用一个直浇道,使金属实收率更高,浇注时间更少,说明叠铸技术有了进一步的发展。

烧窑的温度如何控制?

  1、通风强弱--通风强,则升温快。控制通风强弱可用调节闸板,改变炉栅空隙,人工鼓风等办法进行;

  2、变动入窑气体的温度--入窑气体温度高,则有利于燃烧和升温,采用预热空气的办法可以提高入窑气体的热值,从而提高烧成温度。

  3、预防冷空气侵入窑中--冷空气侵入窑中,会减缓升温速度。为了防止冷气入窑,应封密窑墙,掌握去灰的时间和次数。

  4、加煤也应注意控制每次的加煤量,控制煤块的大小(煤块小的空气多),控制加煤的时间,以及掌握加煤的方法等。

  烧窑前,要根据所烧坯釉的特点决定一个升温和降温的曲线图。曲线的分布情况与下列因素有着密切的关系:

  1、坯料的组成和纯度;

  2、坯体入窑时的含水量;

  3、坯体的厚度和大小,坯体的温度传导系数;

  4、窑的型式、构造和容量,以及装窑密度;

  5、高温结晶相的生成与转变及坯的特性。中等大小的窑,烧制白瓷的升温速度约在下列范围内:脱水期--每小时升温20-40℃,一直烧到500℃为止;氧化期--每小时升温50-70℃,从500℃至900℃左右为止;玻化期--每小时升温25-35℃,从900℃到1350℃左右为止;保温期--每小时约升温5℃到15℃左右。

  我国瓷器一般在1320℃左右烧成,但目前有些产区瓷厂的窑火温度实际上有向高温烧成温度发展的趋向,如湖南有些大瓷厂已达1410℃。变动下列因素,可以控制烧窑的温度:

  湘潭和鑫盛新材料有限公司专业生产特种耐火材料,铸造冶炼用,中频炉用耐火材料,公司位于湘潭鹤岭镇(也就是原湘潭锰矿),附近的人可以去工厂实地看看,在百度、阿里巴巴都能找到他们的产……
本文标题: 烹饪、铸造时鼓风从而提高温度的原理是什么
本文地址: http://www.lzmy123.com/jingdianwenzhang/238870.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    有没有关于历史的好书为什么说英国人保守 有那些地方体现出来
    Top